Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DOC: add notebook for Lecture 11 #32

Draft
wants to merge 9 commits into
base: main
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
394 changes: 394 additions & 0 deletions docs/lecture11.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,394 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "087f68c1-f88d-43b6-9494-26da5bc621ca",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"source": [
"# Lecture 11 Helicity Formalism\n",
"The example `Three-particles-3.dat` in lecture 11\n",
"based on [Lecture 11](https://indico.ific.uv.es/event/6803/contributions/21223) by Vincent Mathieu "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2b01c249-f183-4faf-9ccd-d6069f678467",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input",
"remove-output"
]
},
"outputs": [],
"source": [
"%pip install -q gdown matplotlib numpy particle"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3e1d9835-1f27-4dcf-b359-3937ec89236b",
"metadata": {
"editable": true,
"jupyter": {
"source_hidden": true
},
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-cell"
]
},
"outputs": [],
"source": [
"from __future__ import annotations\n",
"\n",
"import warnings\n",
"\n",
"import gdown\n",
"import numpy as np\n",
"from IPython.display import display\n",
"\n",
"warnings.filterwarnings(\"ignore\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "62d3b045-8dab-4e5a-92d7-07d2d5af4c79",
"metadata": {
"editable": true,
"jupyter": {
"source_hidden": true
},
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [],
"source": [
"filename = gdown.cached_download(\n",
" url=\"https://indico.ific.uv.es/event/6803/contributions/21223/attachments/11221/15563/Three-particles-3.dat\",\n",
" path=\"data/Three-particles-3.dat\",\n",
" md5=\"75fedf381f9b62d3210ff200fc63165f\",\n",
" quiet=True,\n",
" verify=False,\n",
")\n",
"data = np.loadtxt(filename)\n",
"data.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "166252ab-57a2-4628-88e1-32ab8f354f89",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [],
"source": [
"data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "adfe5fbb-ab7b-41b2-8a8c-8f0bac0ce009",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [],
"source": [
"n_final_state = 3\n",
"pa, p1, p2, p3 = (data[i::4].T for i in range(n_final_state + 1))\n",
"p0 = p1 + p2 + p3\n",
"pb = p0 - pa"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d10177c3-02c4-4248-8d0e-181a28453be5",
"metadata": {},
"outputs": [],
"source": [
"def mass(p: np.ndarray) -> np.ndarray:\n",
" return np.sqrt(mass_squared(p))\n",
"\n",
"\n",
"def mass_squared(p: np.ndarray) -> np.ndarray:\n",
" return p[0] ** 2 - np.sum(p[1:] ** 2, axis=0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "adc55b5b-8490-4587-b468-848b32873eee",
"metadata": {},
"outputs": [],
"source": [
"m0 = mass(p0)\n",
"print(f\"{m0.mean():.4g} +/- {m0.std():.4g}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "59a10ead-6653-4344-ab55-f85f2f8fbbde",
"metadata": {},
"outputs": [],
"source": [
"from IPython.display import Math\n",
"\n",
"display(Math(Rf\"m_a = {mass(pa).mean():.3g}\\text{{ GeV}}\"))\n",
"display(Math(Rf\"m_b = {mass(pb).mean():.3g}\\text{{ GeV}}\"))\n",
"for i, p in enumerate([p0, p1, p2, p3]):\n",
" display(Math(Rf\"m_{i} = {mass(p).mean():.3g}\\text{{ GeV}}\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b63474a3-8445-49dc-97b8-20c3935853ce",
"metadata": {},
"outputs": [],
"source": [
"from particle import Particle\n",
"\n",
"\n",
"def find_candidates(\n",
" mass: float, delta: float = 0.001, charge: float | None = None\n",
") -> list[Particle]:\n",
" def identify(p) -> bool:\n",
" if p.pdgid in {21}:\n",
" return False\n",
" if charge is not None and p.charge != charge:\n",
" return False\n",
" if (mass - delta) < 1e-3 * p.mass < (mass + delta):\n",
" return True\n",
" return False\n",
"\n",
" return Particle.findall(identify)\n",
"\n",
"\n",
"ma = mass(pa).mean()\n",
"mb = mass(pb).mean()\n",
"m1 = mass(p1).mean()\n",
"m2 = mass(p2).mean()\n",
"m3 = mass(p3).mean()\n",
"initial_state = (\n",
" find_candidates(ma.mean(), delta=1e-4)[0],\n",
" find_candidates(mb.mean())[0],\n",
")\n",
"final_state = tuple(find_candidates(m.mean())[0] for m in [m1, m2, m3])\n",
"display(\n",
" Math(R\"\\text{Incoming: }\" + \", \".join(f\"{p.latex_name}\" for p in initial_state)),\n",
" Math(R\"\\text{Outgoing: }\" + \", \".join(f\"{p.latex_name}\" for p in final_state)),\n",
")"
]
},
{
"cell_type": "markdown",
"id": "24fce750-e6d7-40f1-9e24-dec0d85fc7b8",
"metadata": {},
"source": [
"a photon&nbsp;$\\gamma$ hitting a proton&nbsp;$p$ and producing a meson&nbsp;$\\eta$, pion&nbsp;$\\pi^0$, and proton&nbsp;$p$."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "376674d5-3bd0-458b-b5d8-3cc356c42f31",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [],
"source": [
"s12 = mass_squared(p1 + p2)\n",
"s23 = mass_squared(p2 + p3)\n",
"s31 = mass_squared(p3 + p1)\n",
"\n",
"m12 = mass(p1 + p2)\n",
"m23 = mass(p2 + p3)\n",
"m31 = mass(p3 + p1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dcef09fd-7994-4302-9e08-70b9950f9b84",
"metadata": {
"editable": true,
"jupyter": {
"source_hidden": true
},
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"fig, ax = plt.subplots()\n",
"fig.suptitle(\"Dalitz plot – 2D histogram\")\n",
"ax.hist2d(s12, s23, bins=100, cmin=1)\n",
"ax.set_xlabel(R\"$s_{12}\\;\\left[\\mathrm{GeV}^2\\right]$\")\n",
"ax.set_ylabel(R\"$s_{23}\\;\\left[\\mathrm{GeV}^2\\right]$\")\n",
"# fig.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3da3dd63-d9e1-4603-8167-2298619062e6",
"metadata": {},
"outputs": [],
"source": [
"R12 = 1.74\n",
"R23 = 1.53\n",
"R31 = 2.45"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9f8606f4-c64f-4f68-b88f-80f8de58b707",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"hide-input"
]
},
"outputs": [],
"source": [
"fig, (ax1, ax2) = plt.subplots(figsize=(10, 4), ncols=2)\n",
"fig.suptitle(\"Dalitz plot – scatter plot\")\n",
"ax1.scatter(s12, s23, c=\"black\", s=1e-3)\n",
"ax1.set_xlabel(R\"$s_{12}\\;\\left[\\mathrm{GeV}^2\\right]$\")\n",
"ax1.set_ylabel(R\"$s_{23}\\;\\left[\\mathrm{GeV}^2\\right]$\")\n",
"ax1.axvline(R12, c=\"C0\", ls=\"dashed\", label=\"$R_{12}$\")\n",
"ax1.axhline(R23, c=\"C1\", ls=\"dashed\", label=\"$R_{23}$\")\n",
"ax1.legend()\n",
"ax2.scatter(s31, s12, c=\"black\", s=1e-3)\n",
"ax2.set_xlabel(R\"$s_{31}\\;\\left[\\mathrm{GeV}^2\\right]$\")\n",
"ax2.set_ylabel(R\"$s_{12}\\;\\left[\\mathrm{GeV}^2\\right]$\")\n",
"ax2.axvline(R31, c=\"C2\", ls=\"dashed\", label=\"$R_{31}$\")\n",
"ax2.axhline(R12, c=\"C0\", ls=\"dashed\", label=\"$R_{12}$\")\n",
"ax2.legend()\n",
"fig.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95aa6945-6427-42ee-8105-9e600b193d03",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": [
"full-width",
"hide-input"
]
},
"outputs": [],
"source": [
"fig, (ax1, ax2, ax3) = plt.subplots(figsize=(12, 4), ncols=3)\n",
"fig.suptitle(\"1D histogram of $s_{12}, s_{23}$, and $s_{31}$\")\n",
"ax1.hist(s12, bins=100, color=\"black\", histtype=\"step\")\n",
"ax1.set_xlabel(R\"$s_{12}$\")\n",
"ax1.set_ylabel(\"counts\")\n",
"ax1.axvline(R12, c=\"C0\", ls=\"dashed\", label=\"$R_{12}$\")\n",
"ax1.legend()\n",
"\n",
"ax2.hist(s23, bins=100, color=\"black\", histtype=\"step\")\n",
"ax2.set_xlabel(R\"$s_{23}$\")\n",
"ax2.set_ylabel(\"counts\")\n",
"ax2.axvline(R23, c=\"C1\", ls=\"dashed\", label=\"$R_{23}$\")\n",
"ax2.legend()\n",
"\n",
"ax3.hist(s31, bins=100, color=\"black\", histtype=\"step\")\n",
"ax3.set_xlabel(R\"$s_{31}$\")\n",
"ax3.set_ylabel(\"counts\")\n",
"ax3.axvline(R31, c=\"C2\", ls=\"dashed\", label=\"$R_{31}$\")\n",
"ax3.legend()\n",
"\n",
"fig.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "360f674e-801c-4fda-aa3a-e57595e0da44",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"source": [
"The intensity of band seems stronger Compare to `Three-particles-1.dat` and `Three-particles-2.dat` in {doc}`lecture02`, but needded further analysis for the modulations."
]
}
],
"metadata": {
"colab": {
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading