From 11ab1289542c6e0a1cd595d53185c4c73ed49b89 Mon Sep 17 00:00:00 2001 From: Jakob Duerrwaechter Date: Mon, 22 Apr 2024 17:56:35 +0200 Subject: [PATCH 1/9] make waste incineration emissions part of chemicals MAC curve instead of unaccounted CCS --- config/scenario_config.csv | 112 +++++++-------- config/scenario_config_21_EU11_ECEMF.csv | 108 +++++++------- config/scenario_config_DeepEl.csv | 18 +-- config/scenario_config_ELEVATE4p4.csv | 52 +++---- config/scenario_config_NGFS_v4.csv | 132 +++++++++--------- core/equations.gms | 2 +- main.gms | 5 - modules/37_industry/subsectors/datainput.gms | 10 -- .../37_industry/subsectors/declarations.gms | 6 - modules/37_industry/subsectors/equations.gms | 6 +- 10 files changed, 216 insertions(+), 235 deletions(-) diff --git a/config/scenario_config.csv b/config/scenario_config.csv index 77c890664..9be4b3482 100644 --- a/config/scenario_config.csv +++ b/config/scenario_config.csv @@ -1,56 +1,56 @@ -title;start;CES_parameters;optimization;slurmConfig;regionmapping;extramappings_historic;cm_rcp_scen;cm_iterative_target_adj;subsidizeLearning;c_budgetCO2from2020;carbonprice;cm_co2_tax_2020;c_peakBudgYr;cm_CO2priceRegConvEndYr;cm_emiscen;c_regi_earlyreti_rate;c_tech_earlyreti_rate;cm_fetaxscen;cm_co2_tax_growth;cm_bioenergy_SustTax;cm_maxProdBiolc;c_ccsinjecratescen;c_ccscapratescen;cm_subsec_model_steel;cm_CESMkup_build;cm_CESMkup_ind;cm_CESMkup_ind_data;cm_wasteIncinerationCCSshare;techpol;regipol;cm_implicitQttyTarget;cm_emiMktTarget;cm_NucRegiPol;cm_CoalRegiPol;cm_altFeEmiFac;cm_POPscen;cm_GDPscen;cm_demScen;cm_oil_scen;cm_gas_scen;cm_coal_scen;c_techAssumptScen;cm_nucscen;cm_so2tax_scen;cm_multigasscen;cm_LU_emi_scen;cm_tradecostBio;cm_1stgen_phaseout;c_SSP_forcing_adjust;cm_APscen;cm_EDGEtr_scen;cm_startyear;path_gdx;path_gdx_ref;path_gdx_bau;path_gdx_refpolicycost;description -testOneRegi-Base;AMT;;testOneRegi;8;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;testOneRegi-Base: This is a test scenario which only runs a single region, not to be used in production. -# H12 SSP2EU;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -SSP2EU-NPi-calibrate;calibrate,AMT,compileInTests;calibrate;;14;;;rcp45;;;0;NPi;;;;9;;;;;;;;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix1;2005;;;;;SSP2EU-NPi-calibrate: This reference policy/baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. -SSP2EU-Base;1,AMT;;;;;;;;;0;;;;;;;off;;;;;;;;;;;;;;;;;;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix1;2005;;;;;SSP2EU-Base: This baseline calibration scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. -SSP2EU-NDC;1,AMT;;;;;;rcp45;3;globallyOptimal;0;NDC;;;;9;;;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix2;2025;;SSP2EU-NPi;SSP2EU-NPi;SSP2EU-NPi;SSP2EU-NDC: This Nationally Determined Contribution (NDC) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century. -SSP2EU-NPi;1,AMT,compileInTests;;;;;;rcp45;3;;0;NPi;;;;9;;;;;;;;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix1;2005;;;;;SSP2EU-NPi: This National Policies Implemented (NPi) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies. -SSP2EU-PkBudg500;1,AMT;;;;;;rcp20;9;globallyOptimal;500;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix4;2025;;SSP2EU-NPi;;SSP2EU-NPi;SSP2EU-PkBudg500: This climate policy scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The stylized climate policy scenario assumes a peak budget of 500 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be well below 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. -SSP2EU-PkBudg650;1,AMT;;;;;;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix4;2025;;SSP2EU-NPi;;SSP2EU-NPi;SSP2EU-PkBudg650: This climate policy scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. -SSP2EU-PkBudg1050;1,AMT;;;;;;rcp26;9;globallyOptimal;1050;diffCurvPhaseIn2Lin;60;2100;;9;;;;;;;;;;;;;2050.GLO 0.5;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix3;2025;;SSP2EU-NPi;;SSP2EU-NPi;SSP2EU-PkBudg1050: This climate policy scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The stylized climate policy scenario assumes a peak budget of 1150 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a well below 2C scenario at median climate sensitivity but returns to values below 2C in at least 67 % of scenarios during the whole century. -# EU21 SSP2EU;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -SSP2EU-EU21-NPi-calibrate;calibrate;calibrate;;14;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp45;;;0;NPi;;;;9;;;;;;;;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix1;2005;;;;;SSP2EU-EU21-calibration: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. -SSP2EU-EU21-Base;1,AMT,compileInTests;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;;;;0;;;;;;;off;;;;;;;;;;;;;;;;;;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix1;2005;;;;;SSP2EU-EU21-Base: This baseline calibration scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. -SSP2EU-EU21-NDC;1,AMT;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp45;3;globallyOptimal;0;NDC;;;;9;;;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix2;2025;;SSP2EU-EU21-NPi;SSP2EU-EU21-NPi;SSP2EU-EU21-NPi;SSP2EU-EU21-NDC: This Nationally Determined Contribution (NDC) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century. -SSP2EU-EU21-NPi;1,AMT;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp45;3;;0;NPi;;;;9;;;;;;;;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix1;2005;;;;;SSP2EU-EU21-NPi: This National Policies Implemented (NPi) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies. -SSP2EU-EU21-PkBudg500;1,AMT;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;500;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix4;2025;;SSP2EU-EU21-NPi;;SSP2EU-EU21-NPi;SSP2EU-EU21-PkBudg500: This climate policy scenario follows the SSP2. The stylized climate policy scenario assumes a peak budget of 500 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. -SSP2EU-EU21-PkBudg650;1,AMT;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix4;2025;;SSP2EU-EU21-NPi;;SSP2EU-EU21-NPi;SSP2EU-EU21-PkBudg650: This climate policy scenario follows the SSP2. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. -SSP2EU-EU21-PkBudg1050;1,AMT;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;9;globallyOptimal;1050;diffCurvPhaseIn2Lin;60;2100;;9;;;;;;;;;;;;;2050.GLO 0.5;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix3;2025;;SSP2EU-EU21-NPi;;SSP2EU-EU21-NPi;SSP2EU-EU21-PkBudg1050: This climate policy scenario follows the SSP2. The stylized climate policy scenario assumes a peak budget of 1050 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a well below 2C scenario at median climate sensitivity but returns to values below 2C in at least 67 % of scenarios during the whole century. -# H12 SSP1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -SSP1-NPi-calibrate;calibrate;calibrate;;14;;;rcp45;;;0;NPi;;;;9;;;2;1.025;1.75;;2;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SSP1;gdp_SSP1;gdp_SSP1;lowOil;lowGas;lowCoal;2;;4;3;SSP1;0.5;1;forcing_SSP1;SSP1;Mix1;2005;;;;;SSP1-calibration: This baseline calibration scenario follows the Shared Socioeconomic Pathways 1 called Sustainability. -SSP1-NDC;1,AMT,compileInTests;;;;;;rcp45;3;globallyOptimal;0;NDC;;;;9;;;2;1.025;1.75;;2;;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;pop_SSP1;gdp_SSP1;gdp_SSP1;lowOil;lowGas;lowCoal;2;;4;3;SSP1;0.5;1;forcing_SSP1;SSP1;Mix2;2025;;SSP2EU-NPi;SSP1-NPi;SSP1-NPi;SSP1-NDC: This Nationally Determined Contribution (NDC) scenario follows the Shared Socioeconomic Pathways 1 called Sustainability. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century. -SSP1-NPi;1,AMT;;;;;;rcp45;3;;0;NPi;;;;9;;;2;1.025;1.75;;2;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SSP1;gdp_SSP1;gdp_SSP1;lowOil;lowGas;lowCoal;2;;4;3;SSP1;0.5;1;forcing_SSP1;SSP1;Mix1;2005;;;;;SSP1-NPi: This National Policies Implemented (NPi) scenario follows the Shared Socioeconomic Pathways 1 called Sustainability. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies. -SSP1-PkBudg650;1,AMT;;;;;;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;2;1.025;1.75;;2;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SSP1;gdp_SSP1;gdp_SSP1;lowOil;lowGas;lowCoal;2;;4;;SSP1;0.5;1;forcing_SSP1;SSP1;Mix4;2025;;SSP2EU-NPi;;;SSP1-PkBudg650: This climate policy scenario follows the Shared Socioeconomic Pathways 1 called Sustainability. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. -SSP1-PkBudg1050;1,AMT;;;;;;rcp26;9;globallyOptimal;1050;diffCurvPhaseIn2Lin;60;2100;;9;;;2;1.025;1.75;;2;;;;;;2050.GLO 0.5;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SSP1;gdp_SSP1;gdp_SSP1;lowOil;lowGas;lowCoal;2;;4;;SSP1;0.5;1;forcing_SSP1;SSP1;Mix3;2025;;SSP2EU-NPi;;;SSP1-PkBudg1050: This climate policy scenario follows the Shared Socioeconomic Pathways 1 called Sustainability. The stylized climate policy scenario assumes a peak budget of 1050 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a well below 2C scenario at median climate sensitivity but returns to values below 2C in at least 67 % of scenarios during the whole century. -# H12 SSP5;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -SSP5-NPi-calibrate;calibrate;calibrate;;14;;;rcp45;;;0;NPi;;;;9;;;1;;1.75;;3;2;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SSP5;gdp_SSP5;gdp_SSP5;highOil;highGas;highCoal;3;6;4;3;SSP5;0.5;1;forcing_SSP5;SSP5;Mix1;2005;;;;;SSP5-calibration: This baseline calibration scenario follows the Shared Socioeconomic Pathways 5 called Fossil-Fueled Development. -SSP5-NDC;1,AMT;;;;;;rcp45;3;globallyOptimal;0;NDC;;;;9;;;1;;1.75;;3;2;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;pop_SSP5;gdp_SSP5;gdp_SSP5;highOil;highGas;highCoal;3;6;4;3;SSP5;0.5;1;forcing_SSP5;SSP5;Mix2;2025;;SSP2EU-NPi;SSP5-NPi;SSP5-NPi;SSP5-NDC: This Nationally Determined Contribution (NDC) scenario follows the Shared Socioeconomic Pathways 5 called Fossil-Fueled Development. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century. -SSP5-NPi;1,AMT;;;;;;rcp45;3;;0;NPi;;;;9;;;1;;1.75;;3;2;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SSP5;gdp_SSP5;gdp_SSP5;highOil;highGas;highCoal;3;6;4;3;SSP5;0.5;1;forcing_SSP5;SSP5;Mix1;2005;;;;;SSP5-NPi: This National Policies Implemented (NPi) scenario follows the Shared Socioeconomic Pathways 5 called Fossil-Fueled Development. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies. -SSP5-PkBudg650;1,AMT;;;;;;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;150;2080;;9;;;1;;1.75;;3;2;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SSP5;gdp_SSP5;gdp_SSP5;highOil;highGas;highCoal;3;6;4;;SSP5;0.5;1;forcing_SSP5;SSP5;Mix4;2025;;SSP2EU-NPi;;;SSP5-PkBudg650: This climate policy scenario follows the Shared Socioeconomic Pathways 5 called Fossil-Fueled Development. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. -SSP5-PkBudg1050;1,AMT,compileInTests;;;;;;rcp26;9;globallyOptimal;1050;diffCurvPhaseIn2Lin;80;2100;;9;;;1;;1.75;;3;2;;;;;2050.GLO 0.5;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SSP5;gdp_SSP5;gdp_SSP5;highOil;highGas;highCoal;3;6;4;;SSP5;0.5;1;forcing_SSP5;SSP5;Mix3;2025;;SSP2EU-NPi;;;SSP5-PkBudg1050: This climate policy scenario follows the Shared Socioeconomic Pathways 5 called Fossil-Fueled Development. The stylized climate policy scenario assumes a peak budget of 1050 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a well below 2C scenario at median climate sensitivity but returns to values below 2C in at least 67 % of scenarios during the whole century. -# H12 SDP_MC;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -SDP_MC-NPi-calibrate;calibrate;calibrate;;14;;;rcp45;;;0;NPi;;;;9;GLO 0.12, EUR_regi 0.15;;2;1.025;1.75;152;2;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SDP_MC;gdp_SDP_MC;gdp_SDP_MC;lowOil;lowGas;lowCoal;2;;4;3;SDP;0.5;1;forcing_SSP1;MFR;Mix4;2005;;;;;"SDP_MC-calibration: This baseline calibration scenario follows the Sustainable Development Pathway scenario following the narrative of ""Managing the global commons"": strong global institutions - efficient technological solutions." -SDP_MC-NDC;1,AMT;;;;;;rcp45;3;globallyOptimal;0;NDC;;;;9;GLO 0.12, EUR_regi 0.15;;2;1.025;1.75;152;2;;;;;;;NDCplus;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;pop_SDP_MC;gdp_SDP_MC;gdp_SDP_MC;lowOil;lowGas;lowCoal;2;;4;3;SDP;0.5;1;forcing_SSP1;MFR;Mix4;2025;;SSP2EU-NPi;SDP_MC-NPi;SDP_MC-NPi;"SDP_MC-NDC: This Nationally Determined Contribution (NDC) scenario follows the Sustainable Development Pathway scenario following the narrative of ""Managing the global commons"": strong global institutions - efficient technological solutions. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century." -SDP_MC-NPi;1,AMT;;;;;;rcp45;3;;0;NPi;;;;9;GLO 0.12, EUR_regi 0.15;;2;1.025;1.75;152;2;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SDP_MC;gdp_SDP_MC;gdp_SDP_MC;lowOil;lowGas;lowCoal;2;;4;3;SDP;0.5;1;forcing_SSP1;MFR;Mix4;2005;;;;;"SDP_MC-NPi: This National Policies Implemented (NPi) scenario follows the Sustainable Development Pathway scenario following the narrative of ""Managing the global commons"": strong global institutions - efficient technological solutions. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies." -SDP_MC-PkBudg650;1,AMT,compileInTests;;;;;;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;150;2045;;9;GLO 0.12, EUR_regi 0.15;;2;1.025;1.75;152;2;;;feelhpb 1.05, fehob 1.75, feheb 0.1;manual;feh2_otherInd 1.04, feelhth_otherInd 0.4, feh2_cement 2.0, feelhth_chemicals 1.3, feh2_chemicals 1.04;2050.GLO 0.9;NDCplus;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SDP_MC;gdp_SDP_MC;gdp_SDP_MC;lowOil;lowGas;lowCoal;2;;4;;SDP;0.5;1;forcing_SSP1;MFR;Mix4;2025;;SSP2EU-NPi;;;"SDP_MC-PkBudg650: This climate policy scenario follows the Sustainable Development Pathway scenario following the narrative of ""Managing the global commons"": strong global institutions - efficient technological solutions. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century." -# H12 SDP_EI;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -SDP_EI-NPi-calibrate;calibrate;calibrate;;14;;;rcp45;;;0;NPi;;;;9;GLO 0.14, EUR_regi 0.15;;2;1.025;1.75;300;;2;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SDP_EI;gdp_SDP_EI;gdp_SDP_EI;lowOil;lowGas;lowCoal;2;;4;3;SDP;0.5;1;forcing_SSP1;SSP1;Mix4;2005;;;;;"SDP_EI-calibration: This baseline calibration scenario follows the Sustainable Development Pathway scenario following the narrative of ""Economy-driven innovation"": tech & market driven - globalized word - high-growth." -SDP_EI-NDC;0;;;;;;rcp45;3;globallyOptimal;0;NDC;;;;9;GLO 0.14, EUR_regi 0.15;;2;1.025;1.75;300;;2;;;;;;NDCplus;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;pop_SDP_EI;gdp_SDP_EI;gdp_SDP_EI;lowOil;lowGas;lowCoal;2;;4;3;SDP;0.5;1;forcing_SSP1;SSP1;Mix4;2025;;SSP2EU-NPi;SDP_EI-NPi;SDP_EI-NPi;"SDP_EI-NDC: This Nationally Determined Contribution (NDC) scenario follows the Sustainable Development Pathway scenario following the narrative of ""Economy-driven innovation"": tech & market driven - globalized word - high-growth. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century." -SDP_EI-NPi;0;;;;;;rcp45;3;;0;NPi;;;;9;GLO 0.14, EUR_regi 0.15;;2;1.025;1.75;300;;2;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SDP_EI;gdp_SDP_EI;gdp_SDP_EI;lowOil;lowGas;lowCoal;2;;4;3;SDP;0.5;1;forcing_SSP1;SSP1;Mix4;2005;;;;;"SDP_EI-NPi: This National Policies Implemented (NPi) scenario following the narrative of ""Economy-driven innovation"": tech & market driven - globalized word - high-growth. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies." -SDP_EI-PkBudg650;0;;;;;;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;150;2045;;9;GLO 0.14, EUR_regi 0.15;;2;1.025;1.75;300;;2;;feelhpb 1.05, fehob 1.75, feheb 0.35;manual;feh2_otherInd 1.05, feelhth_otherInd 0.43, feh2_cement 2.2, feelhth_chemicals 1.4, feh2_chemicals 1.05;2050.GLO 0.9;NDCplus;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SDP_EI;gdp_SDP_EI;gdp_SDP_EI;lowOil;lowGas;lowCoal;2;;4;;SDP;0.5;1;forcing_SSP1;SSP1;Mix4;2025;;SSP2EU-NPi;;;"SDP_EI-PkBudg650: This climate policy scenario following the narrative of ""Economy-driven innovation"": tech & market driven - globalized word - high-growth. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century." -# H12 SDP_RC;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -SDP_RC-NPi-calibrate;calibrate;calibrate;;14;;;rcp45;;;0;NPi;;;;9;;;4;1.025;2;100;5;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SDP_RC;gdp_SDP_RC;gdp_SDP_RC;lowOil;lowGas;lowCoal;2;;4;3;SDP;;1;forcing_SSP1;SSP1;Mix3;2005;;;;;"SDP_RC-calibration: This baseline calibration scenario follows the Sustainable Development Pathway scenario following the narrative of ""Resilient communities"": human well-being - behavioural change - local & less tech-driven." -SDP_RC-NDC;0;;;;;;rcp45;3;globallyOptimal;0;NDC;;;;9;;;4;1.025;2;100;5;;;;;;;NDCplus;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;pop_SDP_RC;gdp_SDP_RC;gdp_SDP_RC;lowOil;lowGas;lowCoal;2;;4;3;SDP;;1;forcing_SSP1;SSP1;Mix3;2025;;SSP2EU-NPi;SDP_RC-NPi;SDP_RC-NPi;"SDP_RC-NDC: This Nationally Determined Contribution (NDC) scenario follows the Sustainable Development Pathway scenario following the narrative of ""Resilient communities"": human well-being - behavioural change - local & less tech-driven. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century." -SDP_RC-NPi;0;;;;;;rcp45;3;;0;NPi;;;;9;;;4;1.025;2;100;5;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SDP_RC;gdp_SDP_RC;gdp_SDP_RC;lowOil;lowGas;lowCoal;2;;4;3;SDP;;1;forcing_SSP1;SSP1;Mix3;2005;;;;;"SDP_RC-NPi: This National Policies Implemented (NPi) scenario follows the Sustainable Development Pathway scenario following the narrative of ""Resilient communities"": human well-being - behavioural change - local & less tech-driven. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies." -SDP_RC-PkBudg650;0;;;;;;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;150;2045;2060;9;;;4;1.025;2;100;5;;;feelhpb 1.05, fehob 1.75, feheb 0.35;manual;feh2_otherInd 1.05, feelhth_otherInd 0.43, feh2_cement 2.2, feelhth_chemicals 1.4, feh2_chemicals 1.05;2050.GLO 0.9;NDCplus;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SDP_RC;gdp_SDP_RC;gdp_SDP_RC;lowOil;lowGas;lowCoal;2;;4;;SDP;;1;forcing_SSP1;SSP1;Mix3;2025;;SSP2EU-NPi;;;"SDP_RC-PkBudg650: This climate policy scenario follows the Sustainable Development Pathway scenario following the narrative of ""Resilient communities"": human well-being - behavioural change - local & less tech-driven. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century." -# H12 SSP2 lowEnergy;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -SSP2EU_lowEn-NPi-calibrate;calibrate;calibrate;;14;;;rcp45;;;0;NPi;;;;9;;;;;;;;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;gdp_SSP2_lowEn;;;;;;;3;;;;;;Mix1;2005;;;;;SSP2EU_lowEn-calibration: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. This scenario also assumes low energy demand trajectories. -SSP2EU_lowEn-NDC;0;;;;;;rcp45;3;globallyOptimal;0;NDC;;;;9;;;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;;;gdp_SSP2_lowEn;;;;;;;3;;;;;;Mix2;2025;;SSP2EU-NPi;SSP2EU_lowEn-NPi;SSP2EU_lowEn-NPi;SSP2EU_lowEn-NDC: This Nationally Determined Contribution (NDC) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. This scenario also assumes low energy demand trajectories. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century. -SSP2EU_lowEn-NPi;0;;;;;;rcp45;3;;0;NPi;;;;9;;;;;;;;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;gdp_SSP2_lowEn;;;;;;;3;;;;;;Mix1;2005;;;;;SSP2EU_lowEn-NPi: This National Policies Implemented (NPi) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. This scenario also assumes low energy demand trajectories. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies. -SSP2EU_lowEn-PkBudg650;0;;;;;;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;gdp_SSP2_lowEn;;;;;;;;;;;;;Mix4;2025;;SSP2EU-NPi;;;SSP2EU_lowEn-PkBudg650: This climate policy scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. This scenario also assumes low energy demand trajectories. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. -SSP2EU_lowEn-PkBudg1050;0;;;;;;rcp26;9;globallyOptimal;1050;diffCurvPhaseIn2Lin;60;2100;;9;;;;;;;;;;;;;2050.GLO 0.5;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;gdp_SSP2_lowEn;;;;;;;;;;;;;Mix3;2025;;SSP2EU-NPi;;;SSP2EU_lowEn-PkBudg1050: This climate policy scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. This scenario also assumes low energy demand trajectories. The stylized climate policy scenario assumes a peak budget of 1050 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a well below 2C scenario at median climate sensitivity but returns to values below 2C in at least 67 % of scenarios during the whole century. -# SSP2 Process-based Steel;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -SSP2EU_PBS-NPi-calibrate;calibrate,AMT,compileInTests;calibrate;;14;;;rcp45;;;0;NPi;;;;9;;;;;;;;;processes;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix1;2005;;;;;SSP2EU_PBS-NPi-calibrate: This reference policy/baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. -SSP2EU_PBS-NDC;1,AMT;;;;;;rcp45;3;globallyOptimal;0;NDC;;;;9;;;;;;;;;processes;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix2;2025;;SSP2EU_PBS-NPi;SSP2EU_PBS-NPi;SSP2EU_PBS-NPi;SSP2EU_PBS-NDC: This Nationally Determined Contribution (NDC) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century. -SSP2EU_PBS-NPi;1,AMT,compileInTests;;;;;;rcp45;3;;0;NPi;;;;9;;;;;;;;;processes;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix1;2005;;;;;SSP2EU_PBS-NPi: This National Policies Implemented (NPi) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies. -SSP2EU_PBS-PkBudg650;1,AMT;;;;;;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;processes;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix4;2025;;SSP2EU_PBS-NPi;;SSP2EU_PBS-NPi;SSP2EU_PBS-PkBudg650: This climate policy scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. +title;start;CES_parameters;optimization;slurmConfig;regionmapping;extramappings_historic;cm_rcp_scen;cm_iterative_target_adj;subsidizeLearning;c_budgetCO2from2020;carbonprice;cm_co2_tax_2020;c_peakBudgYr;cm_CO2priceRegConvEndYr;cm_emiscen;c_regi_earlyreti_rate;c_tech_earlyreti_rate;cm_fetaxscen;cm_co2_tax_growth;cm_bioenergy_SustTax;cm_maxProdBiolc;c_ccsinjecratescen;c_ccscapratescen;cm_subsec_model_steel;cm_CESMkup_build;cm_CESMkup_ind;cm_CESMkup_ind_data;techpol;regipol;cm_implicitQttyTarget;cm_emiMktTarget;cm_NucRegiPol;cm_CoalRegiPol;cm_altFeEmiFac;cm_POPscen;cm_GDPscen;cm_demScen;cm_oil_scen;cm_gas_scen;cm_coal_scen;c_techAssumptScen;cm_nucscen;cm_so2tax_scen;cm_multigasscen;cm_LU_emi_scen;cm_tradecostBio;cm_1stgen_phaseout;c_SSP_forcing_adjust;cm_APscen;cm_EDGEtr_scen;cm_startyear;path_gdx;path_gdx_ref;path_gdx_bau;path_gdx_refpolicycost;description +testOneRegi-Base;AMT;;testOneRegi;8;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;testOneRegi-Base: This is a test scenario which only runs a single region, not to be used in production. +# H12 SSP2EU;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +SSP2EU-NPi-calibrate;calibrate,AMT,compileInTests;calibrate;;14;;;rcp45;;;0;NPi;;;;9;;;;;;;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix1;2005;;;;;SSP2EU-NPi-calibrate: This reference policy/baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. +SSP2EU-Base;1,AMT;;;;;;;;;0;;;;;;;off;;;;;;;;;;;;;;;;;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix1;2005;;;;;SSP2EU-Base: This baseline calibration scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. +SSP2EU-NDC;1,AMT;;;;;;rcp45;3;globallyOptimal;0;NDC;;;;9;;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix2;2025;;SSP2EU-NPi;SSP2EU-NPi;SSP2EU-NPi;SSP2EU-NDC: This Nationally Determined Contribution (NDC) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century. +SSP2EU-NPi;1,AMT,compileInTests;;;;;;rcp45;3;;0;NPi;;;;9;;;;;;;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix1;2005;;;;;SSP2EU-NPi: This National Policies Implemented (NPi) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies. +SSP2EU-PkBudg500;1,AMT;;;;;;rcp20;9;globallyOptimal;500;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix4;2025;;SSP2EU-NPi;;SSP2EU-NPi;SSP2EU-PkBudg500: This climate policy scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The stylized climate policy scenario assumes a peak budget of 500 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be well below 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. +SSP2EU-PkBudg650;1,AMT;;;;;;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix4;2025;;SSP2EU-NPi;;SSP2EU-NPi;SSP2EU-PkBudg650: This climate policy scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. +SSP2EU-PkBudg1050;1,AMT;;;;;;rcp26;9;globallyOptimal;1050;diffCurvPhaseIn2Lin;60;2100;;9;;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix3;2025;;SSP2EU-NPi;;SSP2EU-NPi;SSP2EU-PkBudg1050: This climate policy scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The stylized climate policy scenario assumes a peak budget of 1150 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a well below 2C scenario at median climate sensitivity but returns to values below 2C in at least 67 % of scenarios during the whole century. +# EU21 SSP2EU;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +SSP2EU-EU21-NPi-calibrate;calibrate;calibrate;;14;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp45;;;0;NPi;;;;9;;;;;;;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix1;2005;;;;;SSP2EU-EU21-calibration: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. +SSP2EU-EU21-Base;1,AMT,compileInTests;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;;;;0;;;;;;;off;;;;;;;;;;;;;;;;;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix1;2005;;;;;SSP2EU-EU21-Base: This baseline calibration scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. +SSP2EU-EU21-NDC;1,AMT;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp45;3;globallyOptimal;0;NDC;;;;9;;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix2;2025;;SSP2EU-EU21-NPi;SSP2EU-EU21-NPi;SSP2EU-EU21-NPi;SSP2EU-EU21-NDC: This Nationally Determined Contribution (NDC) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century. +SSP2EU-EU21-NPi;1,AMT;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp45;3;;0;NPi;;;;9;;;;;;;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix1;2005;;;;;SSP2EU-EU21-NPi: This National Policies Implemented (NPi) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies. +SSP2EU-EU21-PkBudg500;1,AMT;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;500;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix4;2025;;SSP2EU-EU21-NPi;;SSP2EU-EU21-NPi;SSP2EU-EU21-PkBudg500: This climate policy scenario follows the SSP2. The stylized climate policy scenario assumes a peak budget of 500 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. +SSP2EU-EU21-PkBudg650;1,AMT;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix4;2025;;SSP2EU-EU21-NPi;;SSP2EU-EU21-NPi;SSP2EU-EU21-PkBudg650: This climate policy scenario follows the SSP2. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. +SSP2EU-EU21-PkBudg1050;1,AMT;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;9;globallyOptimal;1050;diffCurvPhaseIn2Lin;60;2100;;9;;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix3;2025;;SSP2EU-EU21-NPi;;SSP2EU-EU21-NPi;SSP2EU-EU21-PkBudg1050: This climate policy scenario follows the SSP2. The stylized climate policy scenario assumes a peak budget of 1050 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a well below 2C scenario at median climate sensitivity but returns to values below 2C in at least 67 % of scenarios during the whole century. +# H12 SSP1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +SSP1-NPi-calibrate;calibrate;calibrate;;14;;;rcp45;;;0;NPi;;;;9;;;2;1.025;1.75;;2;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SSP1;gdp_SSP1;gdp_SSP1;lowOil;lowGas;lowCoal;2;;4;3;SSP1;0.5;1;forcing_SSP1;SSP1;Mix1;2005;;;;;SSP1-calibration: This baseline calibration scenario follows the Shared Socioeconomic Pathways 1 called Sustainability. +SSP1-NDC;1,AMT,compileInTests;;;;;;rcp45;3;globallyOptimal;0;NDC;;;;9;;;2;1.025;1.75;;2;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;pop_SSP1;gdp_SSP1;gdp_SSP1;lowOil;lowGas;lowCoal;2;;4;3;SSP1;0.5;1;forcing_SSP1;SSP1;Mix2;2025;;SSP2EU-NPi;SSP1-NPi;SSP1-NPi;SSP1-NDC: This Nationally Determined Contribution (NDC) scenario follows the Shared Socioeconomic Pathways 1 called Sustainability. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century. +SSP1-NPi;1,AMT;;;;;;rcp45;3;;0;NPi;;;;9;;;2;1.025;1.75;;2;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SSP1;gdp_SSP1;gdp_SSP1;lowOil;lowGas;lowCoal;2;;4;3;SSP1;0.5;1;forcing_SSP1;SSP1;Mix1;2005;;;;;SSP1-NPi: This National Policies Implemented (NPi) scenario follows the Shared Socioeconomic Pathways 1 called Sustainability. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies. +SSP1-PkBudg650;1,AMT;;;;;;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;2;1.025;1.75;;2;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SSP1;gdp_SSP1;gdp_SSP1;lowOil;lowGas;lowCoal;2;;4;;SSP1;0.5;1;forcing_SSP1;SSP1;Mix4;2025;;SSP2EU-NPi;;;SSP1-PkBudg650: This climate policy scenario follows the Shared Socioeconomic Pathways 1 called Sustainability. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. +SSP1-PkBudg1050;1,AMT;;;;;;rcp26;9;globallyOptimal;1050;diffCurvPhaseIn2Lin;60;2100;;9;;;2;1.025;1.75;;2;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SSP1;gdp_SSP1;gdp_SSP1;lowOil;lowGas;lowCoal;2;;4;;SSP1;0.5;1;forcing_SSP1;SSP1;Mix3;2025;;SSP2EU-NPi;;;SSP1-PkBudg1050: This climate policy scenario follows the Shared Socioeconomic Pathways 1 called Sustainability. The stylized climate policy scenario assumes a peak budget of 1050 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a well below 2C scenario at median climate sensitivity but returns to values below 2C in at least 67 % of scenarios during the whole century. +# H12 SSP5;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +SSP5-NPi-calibrate;calibrate;calibrate;;14;;;rcp45;;;0;NPi;;;;9;;;1;;1.75;;3;2;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SSP5;gdp_SSP5;gdp_SSP5;highOil;highGas;highCoal;3;6;4;3;SSP5;0.5;1;forcing_SSP5;SSP5;Mix1;2005;;;;;SSP5-calibration: This baseline calibration scenario follows the Shared Socioeconomic Pathways 5 called Fossil-Fueled Development. +SSP5-NDC;1,AMT;;;;;;rcp45;3;globallyOptimal;0;NDC;;;;9;;;1;;1.75;;3;2;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;pop_SSP5;gdp_SSP5;gdp_SSP5;highOil;highGas;highCoal;3;6;4;3;SSP5;0.5;1;forcing_SSP5;SSP5;Mix2;2025;;SSP2EU-NPi;SSP5-NPi;SSP5-NPi;SSP5-NDC: This Nationally Determined Contribution (NDC) scenario follows the Shared Socioeconomic Pathways 5 called Fossil-Fueled Development. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century. +SSP5-NPi;1,AMT;;;;;;rcp45;3;;0;NPi;;;;9;;;1;;1.75;;3;2;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SSP5;gdp_SSP5;gdp_SSP5;highOil;highGas;highCoal;3;6;4;3;SSP5;0.5;1;forcing_SSP5;SSP5;Mix1;2005;;;;;SSP5-NPi: This National Policies Implemented (NPi) scenario follows the Shared Socioeconomic Pathways 5 called Fossil-Fueled Development. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies. +SSP5-PkBudg650;1,AMT;;;;;;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;150;2080;;9;;;1;;1.75;;3;2;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SSP5;gdp_SSP5;gdp_SSP5;highOil;highGas;highCoal;3;6;4;;SSP5;0.5;1;forcing_SSP5;SSP5;Mix4;2025;;SSP2EU-NPi;;;SSP5-PkBudg650: This climate policy scenario follows the Shared Socioeconomic Pathways 5 called Fossil-Fueled Development. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. +SSP5-PkBudg1050;1,AMT,compileInTests;;;;;;rcp26;9;globallyOptimal;1050;diffCurvPhaseIn2Lin;80;2100;;9;;;1;;1.75;;3;2;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SSP5;gdp_SSP5;gdp_SSP5;highOil;highGas;highCoal;3;6;4;;SSP5;0.5;1;forcing_SSP5;SSP5;Mix3;2025;;SSP2EU-NPi;;;SSP5-PkBudg1050: This climate policy scenario follows the Shared Socioeconomic Pathways 5 called Fossil-Fueled Development. The stylized climate policy scenario assumes a peak budget of 1050 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a well below 2C scenario at median climate sensitivity but returns to values below 2C in at least 67 % of scenarios during the whole century. +# H12 SDP_MC;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +SDP_MC-NPi-calibrate;calibrate;calibrate;;14;;;rcp45;;;0;NPi;;;;9;GLO 0.12, EUR_regi 0.15;;2;1.025;1.75;152;2;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SDP_MC;gdp_SDP_MC;gdp_SDP_MC;lowOil;lowGas;lowCoal;2;;4;3;SDP;0.5;1;forcing_SSP1;MFR;Mix4;2005;;;;;"SDP_MC-calibration: This baseline calibration scenario follows the Sustainable Development Pathway scenario following the narrative of ""Managing the global commons"": strong global institutions - efficient technological solutions." +SDP_MC-NDC;1,AMT;;;;;;rcp45;3;globallyOptimal;0;NDC;;;;9;GLO 0.12, EUR_regi 0.15;;2;1.025;1.75;152;2;;;;;;NDCplus;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;pop_SDP_MC;gdp_SDP_MC;gdp_SDP_MC;lowOil;lowGas;lowCoal;2;;4;3;SDP;0.5;1;forcing_SSP1;MFR;Mix4;2025;;SSP2EU-NPi;SDP_MC-NPi;SDP_MC-NPi;"SDP_MC-NDC: This Nationally Determined Contribution (NDC) scenario follows the Sustainable Development Pathway scenario following the narrative of ""Managing the global commons"": strong global institutions - efficient technological solutions. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century." +SDP_MC-NPi;1,AMT;;;;;;rcp45;3;;0;NPi;;;;9;GLO 0.12, EUR_regi 0.15;;2;1.025;1.75;152;2;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SDP_MC;gdp_SDP_MC;gdp_SDP_MC;lowOil;lowGas;lowCoal;2;;4;3;SDP;0.5;1;forcing_SSP1;MFR;Mix4;2005;;;;;"SDP_MC-NPi: This National Policies Implemented (NPi) scenario follows the Sustainable Development Pathway scenario following the narrative of ""Managing the global commons"": strong global institutions - efficient technological solutions. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies." +SDP_MC-PkBudg650;1,AMT,compileInTests;;;;;;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;150;2045;;9;GLO 0.12, EUR_regi 0.15;;2;1.025;1.75;152;2;;;feelhpb 1.05, fehob 1.75, feheb 0.1;manual;feh2_otherInd 1.04, feelhth_otherInd 0.4, feh2_cement 2.0, feelhth_chemicals 1.3, feh2_chemicals 1.04;NDCplus;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SDP_MC;gdp_SDP_MC;gdp_SDP_MC;lowOil;lowGas;lowCoal;2;;4;;SDP;0.5;1;forcing_SSP1;MFR;Mix4;2025;;SSP2EU-NPi;;;"SDP_MC-PkBudg650: This climate policy scenario follows the Sustainable Development Pathway scenario following the narrative of ""Managing the global commons"": strong global institutions - efficient technological solutions. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century." +# H12 SDP_EI;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +SDP_EI-NPi-calibrate;calibrate;calibrate;;14;;;rcp45;;;0;NPi;;;;9;GLO 0.14, EUR_regi 0.15;;2;1.025;1.75;300;;2;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SDP_EI;gdp_SDP_EI;gdp_SDP_EI;lowOil;lowGas;lowCoal;2;;4;3;SDP;0.5;1;forcing_SSP1;SSP1;Mix4;2005;;;;;"SDP_EI-calibration: This baseline calibration scenario follows the Sustainable Development Pathway scenario following the narrative of ""Economy-driven innovation"": tech & market driven - globalized word - high-growth." +SDP_EI-NDC;0;;;;;;rcp45;3;globallyOptimal;0;NDC;;;;9;GLO 0.14, EUR_regi 0.15;;2;1.025;1.75;300;;2;;;;;NDCplus;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;pop_SDP_EI;gdp_SDP_EI;gdp_SDP_EI;lowOil;lowGas;lowCoal;2;;4;3;SDP;0.5;1;forcing_SSP1;SSP1;Mix4;2025;;SSP2EU-NPi;SDP_EI-NPi;SDP_EI-NPi;"SDP_EI-NDC: This Nationally Determined Contribution (NDC) scenario follows the Sustainable Development Pathway scenario following the narrative of ""Economy-driven innovation"": tech & market driven - globalized word - high-growth. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century." +SDP_EI-NPi;0;;;;;;rcp45;3;;0;NPi;;;;9;GLO 0.14, EUR_regi 0.15;;2;1.025;1.75;300;;2;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SDP_EI;gdp_SDP_EI;gdp_SDP_EI;lowOil;lowGas;lowCoal;2;;4;3;SDP;0.5;1;forcing_SSP1;SSP1;Mix4;2005;;;;;"SDP_EI-NPi: This National Policies Implemented (NPi) scenario following the narrative of ""Economy-driven innovation"": tech & market driven - globalized word - high-growth. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies." +SDP_EI-PkBudg650;0;;;;;;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;150;2045;;9;GLO 0.14, EUR_regi 0.15;;2;1.025;1.75;300;;2;;feelhpb 1.05, fehob 1.75, feheb 0.35;manual;feh2_otherInd 1.05, feelhth_otherInd 0.43, feh2_cement 2.2, feelhth_chemicals 1.4, feh2_chemicals 1.05;NDCplus;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SDP_EI;gdp_SDP_EI;gdp_SDP_EI;lowOil;lowGas;lowCoal;2;;4;;SDP;0.5;1;forcing_SSP1;SSP1;Mix4;2025;;SSP2EU-NPi;;;"SDP_EI-PkBudg650: This climate policy scenario following the narrative of ""Economy-driven innovation"": tech & market driven - globalized word - high-growth. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century." +# H12 SDP_RC;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +SDP_RC-NPi-calibrate;calibrate;calibrate;;14;;;rcp45;;;0;NPi;;;;9;;;4;1.025;2;100;5;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SDP_RC;gdp_SDP_RC;gdp_SDP_RC;lowOil;lowGas;lowCoal;2;;4;3;SDP;;1;forcing_SSP1;SSP1;Mix3;2005;;;;;"SDP_RC-calibration: This baseline calibration scenario follows the Sustainable Development Pathway scenario following the narrative of ""Resilient communities"": human well-being - behavioural change - local & less tech-driven." +SDP_RC-NDC;0;;;;;;rcp45;3;globallyOptimal;0;NDC;;;;9;;;4;1.025;2;100;5;;;;;;NDCplus;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;pop_SDP_RC;gdp_SDP_RC;gdp_SDP_RC;lowOil;lowGas;lowCoal;2;;4;3;SDP;;1;forcing_SSP1;SSP1;Mix3;2025;;SSP2EU-NPi;SDP_RC-NPi;SDP_RC-NPi;"SDP_RC-NDC: This Nationally Determined Contribution (NDC) scenario follows the Sustainable Development Pathway scenario following the narrative of ""Resilient communities"": human well-being - behavioural change - local & less tech-driven. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century." +SDP_RC-NPi;0;;;;;;rcp45;3;;0;NPi;;;;9;;;4;1.025;2;100;5;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;pop_SDP_RC;gdp_SDP_RC;gdp_SDP_RC;lowOil;lowGas;lowCoal;2;;4;3;SDP;;1;forcing_SSP1;SSP1;Mix3;2005;;;;;"SDP_RC-NPi: This National Policies Implemented (NPi) scenario follows the Sustainable Development Pathway scenario following the narrative of ""Resilient communities"": human well-being - behavioural change - local & less tech-driven. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies." +SDP_RC-PkBudg650;0;;;;;;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;150;2045;2060;9;;;4;1.025;2;100;5;;;feelhpb 1.05, fehob 1.75, feheb 0.35;manual;feh2_otherInd 1.05, feelhth_otherInd 0.43, feh2_cement 2.2, feelhth_chemicals 1.4, feh2_chemicals 1.05;NDCplus;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;pop_SDP_RC;gdp_SDP_RC;gdp_SDP_RC;lowOil;lowGas;lowCoal;2;;4;;SDP;;1;forcing_SSP1;SSP1;Mix3;2025;;SSP2EU-NPi;;;"SDP_RC-PkBudg650: This climate policy scenario follows the Sustainable Development Pathway scenario following the narrative of ""Resilient communities"": human well-being - behavioural change - local & less tech-driven. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century." +# H12 SSP2 lowEnergy;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +SSP2EU_lowEn-NPi-calibrate;calibrate;calibrate;;14;;;rcp45;;;0;NPi;;;;9;;;;;;;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;gdp_SSP2_lowEn;;;;;;;3;;;;;;Mix1;2005;;;;;SSP2EU_lowEn-calibration: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. This scenario also assumes low energy demand trajectories. +SSP2EU_lowEn-NDC;0;;;;;;rcp45;3;globallyOptimal;0;NDC;;;;9;;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;;;gdp_SSP2_lowEn;;;;;;;3;;;;;;Mix2;2025;;SSP2EU-NPi;SSP2EU_lowEn-NPi;SSP2EU_lowEn-NPi;SSP2EU_lowEn-NDC: This Nationally Determined Contribution (NDC) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. This scenario also assumes low energy demand trajectories. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century. +SSP2EU_lowEn-NPi;0;;;;;;rcp45;3;;0;NPi;;;;9;;;;;;;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;gdp_SSP2_lowEn;;;;;;;3;;;;;;Mix1;2005;;;;;SSP2EU_lowEn-NPi: This National Policies Implemented (NPi) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. This scenario also assumes low energy demand trajectories. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies. +SSP2EU_lowEn-PkBudg650;0;;;;;;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;gdp_SSP2_lowEn;;;;;;;;;;;;;Mix4;2025;;SSP2EU-NPi;;;SSP2EU_lowEn-PkBudg650: This climate policy scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. This scenario also assumes low energy demand trajectories. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. +SSP2EU_lowEn-PkBudg1050;0;;;;;;rcp26;9;globallyOptimal;1050;diffCurvPhaseIn2Lin;60;2100;;9;;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;gdp_SSP2_lowEn;;;;;;;;;;;;;Mix3;2025;;SSP2EU-NPi;;;SSP2EU_lowEn-PkBudg1050: This climate policy scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. This scenario also assumes low energy demand trajectories. The stylized climate policy scenario assumes a peak budget of 1050 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a well below 2C scenario at median climate sensitivity but returns to values below 2C in at least 67 % of scenarios during the whole century. +# SSP2 Process-based Steel;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +SSP2EU_PBS-NPi-calibrate;calibrate,AMT,compileInTests;calibrate;;14;;;rcp45;;;0;NPi;;;;9;;;;;;;;;processes;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix1;2005;;;;;SSP2EU_PBS-NPi-calibrate: This reference policy/baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. +SSP2EU_PBS-NDC;1,AMT;;;;;;rcp45;3;globallyOptimal;0;NDC;;;;9;;;;;;;;;processes;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;2020.2030.EUR_regi.all.year.netGHG_LULUCFGrassi 2.450;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix2;2025;;SSP2EU_PBS-NPi;SSP2EU_PBS-NPi;SSP2EU_PBS-NPi;SSP2EU_PBS-NDC: This Nationally Determined Contribution (NDC) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century. +SSP2EU_PBS-NPi;1,AMT,compileInTests;;;;;;rcp45;3;;0;NPi;;;;9;;;;;;;;;processes;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;Mix1;2005;;;;;SSP2EU_PBS-NPi: This National Policies Implemented (NPi) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NPi assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies. +SSP2EU_PBS-PkBudg650;1,AMT;;;;;;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;processes;;;;NDC;regiCarbonPrice;2030.EUR_regi.tax.t.FE_wo_b_wo_n_e.all 1.2809;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;Mix4;2025;;SSP2EU_PBS-NPi;;SSP2EU_PBS-NPi;SSP2EU_PBS-PkBudg650: This climate policy scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The stylized climate policy scenario assumes a peak budget of 650 Gt CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5C scenario, peak warming is allowed to be at or slightly above 1.5C at median climate sensitivity but returns to values below 1.5C in at least 67 % of scenarios by the end of the century. diff --git a/config/scenario_config_21_EU11_ECEMF.csv b/config/scenario_config_21_EU11_ECEMF.csv index 3af043562..7cf8834a6 100644 --- a/config/scenario_config_21_EU11_ECEMF.csv +++ b/config/scenario_config_21_EU11_ECEMF.csv @@ -1,54 +1,54 @@ -title;start;CES_parameters;optimization;slurmConfig;regionmapping;extramappings_historic;cm_rcp_scen;cm_iterative_target_adj;subsidizeLearning;c_budgetCO2from2020;carbonprice;cm_co2_tax_2020;c_peakBudgYr;cm_CO2priceRegConvEndYr;cm_emiscen;c_regi_earlyreti_rate;c_tech_earlyreti_rate;cm_fetaxscen;cm_co2_tax_growth;cm_bioenergy_SustTax;cm_maxProdBiolc;c_ccsinjecratescen;c_ccscapratescen;cm_CESMkup_build;cm_CESMkup_ind;cm_CESMkup_ind_data;cm_wasteIncinerationCCSshare;techpol;regipol;cm_implicitQttyTarget;cm_emiMktTarget;cm_NucRegiPol;cm_CoalRegiPol;cm_altFeEmiFac;cm_POPscen;cm_GDPscen;cm_demScen;cm_oil_scen;cm_gas_scen;cm_coal_scen;c_techAssumptScen;cm_nucscen;cm_so2tax_scen;cm_multigasscen;cm_LU_emi_scen;cm_tradecostBio;cm_1stgen_phaseout;c_SSP_forcing_adjust;cm_APscen;water;cm_EDGEtr_scen;cm_startyear;path_gdx;path_gdx_ref;path_gdx_bau;path_gdx_refpolicycost;description;cm_loadFromGDX_implicitQttyTargetTax;cm_implicitPriceTarget;cm_implicitPePriceTarget;cm_VREminShare;c_regi_nucscen;cm_incolearn;cm_learnRate;cm_regiExoPrice;c_testOneRegi_region;cm_nash_mode;c_keep_iteration_gdxes;cm_abortOnConsecFail;cm_emiMktTarget_tolerance -# _____default_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -xx_DIAG-NPI;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp45;3;;0;NPi;;;;9;;;;;;;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;heat;Mix1;2005;;;;;SSP2EU-EU21-NPi: This National Policies Implemented (Npi) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NPi is identical to the NDC scenario until 2020 but assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies.;;;;;;;;;;;1;; -# _____pure_carbon_pricing_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -xx_DIAG-C80-gr5;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-NPI;xx_DIAG-NPI;xx_DIAG-NPI;;;;;;;;;;GLO.(2025 34,2030 44,2035 56,2040 71,2045 91,2050 116,2055 148,2060 190,2070 309,2080 503,2090 819,2100 1334,2110 1334,2130 1334,2150 1334);;;;; -xx_DIAG-C0to80-gr5;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-NPI;xx_DIAG-NPI;xx_DIAG-NPI;;;;;;;;;;GLO.(2025 0.001,2030 0.001,2035 0.001,2040 71,2045 91,2050 116,2055 148,2060 190,2070 309,2080 503,2090 819,2100 1334,2110 1334,2130 1334,2150 1334);;;;; -xx_DIAG-C400-lin;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-NPI;xx_DIAG-NPI;xx_DIAG-NPI;;;;;;;;;;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; -# _____NZero_DIAG_scenario_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -xx_DIAG-NZero;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-NPI;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; -# _____C400-lin_tech_constraint_scenarios_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -xx_DIAG-C400-lin-LimBio;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).GLO.tax.t.PE.biomass 3.17, (2035,2040,2045,2050).EUR_regi.tax.t.PE.biomass 0.22;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; -xx_DIAG-C400-lin-LimCCS;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825, (2035,2040,2045,2050).GLO.tax.t.CCS.all 2000, (2035,2040,2045,2050).EUR_regi.tax.t.CCS.all 250;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; -xx_DIAG-C400-lin-LimNuclear;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;5;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;ENC,EWN,ECS,ESC,ECE,FRA,DEU,UKI,ESW;;;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; -# _____C400-lin_DIAG_paradigm_shift_scenarios_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -xx_DIAG-C400-lin-HighVRE;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;2050.EUR_regi 0.7;;wind 2300, windoff 4700, spv 5060;wind 0.9, windoff 0.9, spv 0.9;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; -xx_DIAG-C400-lin-HighElectrification;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;elecPrice;;;;;wind 0.820125, windoff 0.91125, spv 0.95;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; -xx_DIAG-C400-lin-HighElec-Supply;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825, 2050.EUR_regi.sub.t.SE.electricity 0.913;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; -xx_DIAG-C400-lin-HighH2;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;H2Price;;;;;;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; -xx_DIAG-C400-lin-ResidualFossil;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;highFossilPrice;;;;;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; -xx_DIAG-C400-lin-HighEff;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; -# _____NZero_scenario_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -xx_WP1_Nzero;0,WP1;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-NPI;xx_DIAG-NPI;xx_DIAG-NPI;;same as xx_DIAG-Nzero;;;;;;;;;;;;; -# _____NZero_tech_constraint_scenarios_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -xx_WP1_NZero-LimBio;0,WP1;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).GLO.tax.t.PE.biomass 3.17, (2035,2040,2045,2050).EUR_regi.tax.t.PE.biomass 0.22;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; -xx_WP1_NZero-LimCCS;0,WP1;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825, (2035,2040,2045,2050).GLO.tax.t.CCS.all 2000, (2035,2040,2045,2050).EUR_regi.tax.t.CCS.all 250;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; -xx_WP1_NZero-LimNuclear;0,WP1;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;5;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;ENC,EWN,ECS,ESC,ECE,FRA,DEU,UKI,ESW;;;;;;;; -# _____WP5p3_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -xx_WP5_Base;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp45;3;;0;NPi;;;;9;;;;;;;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;heat;Mix1;2005;;;;;same as xx_DIAG-NPI;;;;;;;;;;;1;; -xx_WP5_OPT-CP;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NPi2018;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.691, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix3;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;;;;;;;;;;;;;; -xx_WP5_OPT-CP-LimBio;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NPi2018;regiCarbonPrice;(2035,2040,2045,2050).GLO.tax.t.PE.biomass 3.17, (2035,2040,2045,2050).EUR_regi.tax.t.PE.biomass 0.22;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.691, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix3;2025;xx_WP5_OPT-CP;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; -xx_WP5_OPT-CP-LimCCS;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NPi2018;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825, (2035,2040,2045,2050).GLO.tax.t.CCS.all 3000, (2035,2040,2045,2050).EUR_regi.tax.t.CCS.all 250;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.691, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix3;2025;xx_WP5_OPT-CP;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; -xx_WP5_OPT-CP-LimNuclear;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NPi2018;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.691, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;5;;;;;;;;heat;Mix3;2025;xx_WP5_OPT-CP;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;ENC,EWN,ECS,ESC,ECE,FRA,DEU,UKI,ESW;;;;;;;; -# xx_WP5_OPT-CP-LimRES;0;;;;;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.9;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -xx_WP5_OPT-REG;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EU27_regi.tax.t.FE_wo_n_e.all 1.1235, (2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.691, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;;;;;;;;;;;;;; -xx_WP5_OPT-REG-LimBio;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EU27_regi.tax.t.FE_wo_n_e.all 1.1235, (2035,2040,2045,2050).GLO.tax.t.PE.biomass 3.17, (2035,2040,2045,2050).EUR_regi.tax.t.PE.biomass 0.22;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.691, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP5_OPT-REG;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; -xx_WP5_OPT-REG-LimCCS;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EU27_regi.tax.t.FE_wo_n_e.all 1.1235, (2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825, (2035,2040,2045,2050).GLO.tax.t.CCS.all 3000, (2035,2040,2045,2050).EUR_regi.tax.t.CCS.all 250;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.691, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP5_OPT-REG;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; -xx_WP5_OPT-REG-LimNuclear;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EU27_regi.tax.t.FE_wo_n_e.all 1.1235, (2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.691, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;5;;;;;;;;heat;Mix4;2025;xx_WP5_OPT-REG;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;ENC,EWN,ECS,ESC,ECE,FRA,DEU,UKI,ESW;;;;;;;; -# xx_WP5_OPT-REG-LimRES;0;;;;;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.9;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -xx_WP5_RAP-CP;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NPi2018;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.321, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix3;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;;;;;;;;;;;;;; -xx_WP5_RAP-CP-LimBio;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NPi2018;regiCarbonPrice;(2035,2040,2045,2050).GLO.tax.t.PE.biomass 3.17, (2035,2040,2045,2050).EUR_regi.tax.t.PE.biomass 0.22;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.321, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix3;2025;xx_WP5_RAP-CP;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; -xx_WP5_RAP-CP-LimCCS;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NPi2018;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825, (2035,2040,2045,2050).GLO.tax.t.CCS.all 3000, (2035,2040,2045,2050).EUR_regi.tax.t.CCS.all 250;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.321, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix3;2025;xx_WP5_RAP-CP;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; -xx_WP5_RAP-CP-LimNuclear;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NPi2018;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.321, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;5;;;;;;;;heat;Mix3;2025;xx_WP5_RAP-CP;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;ENC,EWN,ECS,ESC,ECE,FRA,DEU,UKI,ESW;;;;;;;; -# xx_WP5_RAP-CP-LimRES;0;;;;;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.9;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -xx_WP5_RAP-REG;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EU27_regi.tax.t.FE_wo_n_e.all 1.1235, (2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.321, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;;;;;;;;;;;;;; -xx_WP5_RAP-REG-LimBio;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EU27_regi.tax.t.FE_wo_n_e.all 1.1235, (2035,2040,2045,2050).GLO.tax.t.PE.biomass 3.17, (2035,2040,2045,2050).EUR_regi.tax.t.PE.biomass 0.22;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.321, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP5_RAP-REG;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; -xx_WP5_RAP-REG-LimCCS;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EU27_regi.tax.t.FE_wo_n_e.all 1.1235, (2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825, (2035,2040,2045,2050).GLO.tax.t.CCS.all 3000, (2035,2040,2045,2050).EUR_regi.tax.t.CCS.all 250;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.321, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP5_RAP-REG;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; -xx_WP5_RAP-REG-LimNuclear;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;2030.EU27_regi.tax.t.FE_wo_n_e.all 1.1235, (2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.321, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;5;;;;;;;;heat;Mix4;2025;xx_WP5_RAP-REG;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;ENC,EWN,ECS,ESC,ECE,FRA,DEU,UKI,ESW;;;;;;;; -# xx_WP5_RAP-REG-LimRES;0;;;;;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.9;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -# _____tests_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;35.43046358;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -test_WP1_Nzero_DEU;0,WP1;;testOneRegi;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-NPI;xx_DIAG-NPI;xx_DIAG-NPI;;same as xx_DIAG-Nzero;;;;;;;;;DEU;1;1;1; -xx_WP1_Nzero_highPrecision_10tCO2eq;0,test;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;same as xx_DIAG-Nzero;;;;;;;;;;;;;0.002 -xx_WP1_Nzero_highPrecision_5tCO2eq;0,test;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;same as xx_DIAG-Nzero;;;;;;;;;;;;;0.001 -xx_WP1_Nzero_highPrecision_1tCO2eq;0,test;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;same as xx_DIAG-Nzero;;;;;;;;;;;;;0.0002 -xx_WP1_Nzero_highPrecision_0p4tCO2eq;0,test;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;2050.GLO 0.9;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;same as xx_DIAG-Nzero;;;;;;;;;;;;;0.00008 +title;start;CES_parameters;optimization;slurmConfig;regionmapping;extramappings_historic;cm_rcp_scen;cm_iterative_target_adj;subsidizeLearning;c_budgetCO2from2020;carbonprice;cm_co2_tax_2020;c_peakBudgYr;cm_CO2priceRegConvEndYr;cm_emiscen;c_regi_earlyreti_rate;c_tech_earlyreti_rate;cm_fetaxscen;cm_co2_tax_growth;cm_bioenergy_SustTax;cm_maxProdBiolc;c_ccsinjecratescen;c_ccscapratescen;cm_CESMkup_build;cm_CESMkup_ind;cm_CESMkup_ind_data;techpol;regipol;cm_implicitQttyTarget;cm_emiMktTarget;cm_NucRegiPol;cm_CoalRegiPol;cm_altFeEmiFac;cm_POPscen;cm_GDPscen;cm_demScen;cm_oil_scen;cm_gas_scen;cm_coal_scen;c_techAssumptScen;cm_nucscen;cm_so2tax_scen;cm_multigasscen;cm_LU_emi_scen;cm_tradecostBio;cm_1stgen_phaseout;c_SSP_forcing_adjust;cm_APscen;water;cm_EDGEtr_scen;cm_startyear;path_gdx;path_gdx_ref;path_gdx_bau;path_gdx_refpolicycost;description;cm_loadFromGDX_implicitQttyTargetTax;cm_implicitPriceTarget;cm_implicitPePriceTarget;cm_VREminShare;c_regi_nucscen;cm_incolearn;cm_learnRate;cm_regiExoPrice;c_testOneRegi_region;cm_nash_mode;c_keep_iteration_gdxes;cm_abortOnConsecFail;cm_emiMktTarget_tolerance +# _____default_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +xx_DIAG-NPI;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp45;3;;0;NPi;;;;9;;;;;;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;heat;Mix1;2005;;;;;SSP2EU-EU21-NPi: This National Policies Implemented (Npi) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NPi is identical to the NDC scenario until 2020 but assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies.;;;;;;;;;;;1;; +# _____pure_carbon_pricing_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +xx_DIAG-C80-gr5;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-NPI;xx_DIAG-NPI;xx_DIAG-NPI;;;;;;;;;;GLO.(2025 34,2030 44,2035 56,2040 71,2045 91,2050 116,2055 148,2060 190,2070 309,2080 503,2090 819,2100 1334,2110 1334,2130 1334,2150 1334);;;;; +xx_DIAG-C0to80-gr5;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-NPI;xx_DIAG-NPI;xx_DIAG-NPI;;;;;;;;;;GLO.(2025 0.001,2030 0.001,2035 0.001,2040 71,2045 91,2050 116,2055 148,2060 190,2070 309,2080 503,2090 819,2100 1334,2110 1334,2130 1334,2150 1334);;;;; +xx_DIAG-C400-lin;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-NPI;xx_DIAG-NPI;xx_DIAG-NPI;;;;;;;;;;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; +# _____NZero_DIAG_scenario_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +xx_DIAG-NZero;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-NPI;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; +# _____C400-lin_tech_constraint_scenarios_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +xx_DIAG-C400-lin-LimBio;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).GLO.tax.t.PE.biomass 3.17, (2035,2040,2045,2050).EUR_regi.tax.t.PE.biomass 0.22;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; +xx_DIAG-C400-lin-LimCCS;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825, (2035,2040,2045,2050).GLO.tax.t.CCS.all 2000, (2035,2040,2045,2050).EUR_regi.tax.t.CCS.all 250;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; +xx_DIAG-C400-lin-LimNuclear;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;5;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;ENC,EWN,ECS,ESC,ECE,FRA,DEU,UKI,ESW;;;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; +# _____C400-lin_DIAG_paradigm_shift_scenarios_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +xx_DIAG-C400-lin-HighVRE;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;2050.EUR_regi 0.7;;wind 2300, windoff 4700, spv 5060;wind 0.9, windoff 0.9, spv 0.9;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; +xx_DIAG-C400-lin-HighElectrification;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;elecPrice;;;;;wind 0.820125, windoff 0.91125, spv 0.95;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; +xx_DIAG-C400-lin-HighElec-Supply;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825, 2050.EUR_regi.sub.t.SE.electricity 0.913;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; +xx_DIAG-C400-lin-HighH2;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;H2Price;;;;;;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; +xx_DIAG-C400-lin-ResidualFossil;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;highFossilPrice;;;;;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; +xx_DIAG-C400-lin-HighEff;0,DIAG;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp26;;globallyOptimal;0;NPi;;;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-C400-lin;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;GLO.(2025 116,2030 196,2035 277,2040 357,2045 438,2050 518,2055 598,2060 679,2070 839,2080 1000,2090 1161,2100 1321,2110 1321,2130 1321,2150 1321);;;;; +# _____NZero_scenario_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +xx_WP1_Nzero;0,WP1;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-NPI;xx_DIAG-NPI;xx_DIAG-NPI;;same as xx_DIAG-Nzero;;;;;;;;;;;;; +# _____NZero_tech_constraint_scenarios_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +xx_WP1_NZero-LimBio;0,WP1;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).GLO.tax.t.PE.biomass 3.17, (2035,2040,2045,2050).EUR_regi.tax.t.PE.biomass 0.22;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; +xx_WP1_NZero-LimCCS;0,WP1;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825, (2035,2040,2045,2050).GLO.tax.t.CCS.all 2000, (2035,2040,2045,2050).EUR_regi.tax.t.CCS.all 250;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; +xx_WP1_NZero-LimNuclear;0,WP1;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;5;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;ENC,EWN,ECS,ESC,ECE,FRA,DEU,UKI,ESW;;;;;;;; +# _____WP5p3_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +xx_WP5_Base;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp45;3;;0;NPi;;;;9;;;;;;;;;;;;NPi2018;regiCarbonPrice;;;on;on;EUR_regi, NEU_regi;;;;;;;;;;3;;;;;;heat;Mix1;2005;;;;;same as xx_DIAG-NPI;;;;;;;;;;;1;; +xx_WP5_OPT-CP;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NPi2018;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.691, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix3;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;;;;;;;;;;;;;; +xx_WP5_OPT-CP-LimBio;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NPi2018;regiCarbonPrice;(2035,2040,2045,2050).GLO.tax.t.PE.biomass 3.17, (2035,2040,2045,2050).EUR_regi.tax.t.PE.biomass 0.22;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.691, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix3;2025;xx_WP5_OPT-CP;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; +xx_WP5_OPT-CP-LimCCS;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NPi2018;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825, (2035,2040,2045,2050).GLO.tax.t.CCS.all 3000, (2035,2040,2045,2050).EUR_regi.tax.t.CCS.all 250;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.691, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix3;2025;xx_WP5_OPT-CP;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; +xx_WP5_OPT-CP-LimNuclear;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NPi2018;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.691, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;5;;;;;;;;heat;Mix3;2025;xx_WP5_OPT-CP;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;ENC,EWN,ECS,ESC,ECE,FRA,DEU,UKI,ESW;;;;;;;; +# xx_WP5_OPT-CP-LimRES;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +xx_WP5_OPT-REG;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EU27_regi.tax.t.FE_wo_n_e.all 1.1235, (2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.691, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;;;;;;;;;;;;;; +xx_WP5_OPT-REG-LimBio;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EU27_regi.tax.t.FE_wo_n_e.all 1.1235, (2035,2040,2045,2050).GLO.tax.t.PE.biomass 3.17, (2035,2040,2045,2050).EUR_regi.tax.t.PE.biomass 0.22;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.691, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP5_OPT-REG;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; +xx_WP5_OPT-REG-LimCCS;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EU27_regi.tax.t.FE_wo_n_e.all 1.1235, (2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825, (2035,2040,2045,2050).GLO.tax.t.CCS.all 3000, (2035,2040,2045,2050).EUR_regi.tax.t.CCS.all 250;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.691, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP5_OPT-REG;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; +xx_WP5_OPT-REG-LimNuclear;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EU27_regi.tax.t.FE_wo_n_e.all 1.1235, (2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.691, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;5;;;;;;;;heat;Mix4;2025;xx_WP5_OPT-REG;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;ENC,EWN,ECS,ESC,ECE,FRA,DEU,UKI,ESW;;;;;;;; +# xx_WP5_OPT-REG-LimRES;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +xx_WP5_RAP-CP;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NPi2018;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.321, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix3;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;;;;;;;;;;;;;; +xx_WP5_RAP-CP-LimBio;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NPi2018;regiCarbonPrice;(2035,2040,2045,2050).GLO.tax.t.PE.biomass 3.17, (2035,2040,2045,2050).EUR_regi.tax.t.PE.biomass 0.22;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.321, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix3;2025;xx_WP5_RAP-CP;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; +xx_WP5_RAP-CP-LimCCS;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NPi2018;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825, (2035,2040,2045,2050).GLO.tax.t.CCS.all 3000, (2035,2040,2045,2050).EUR_regi.tax.t.CCS.all 250;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.321, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix3;2025;xx_WP5_RAP-CP;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; +xx_WP5_RAP-CP-LimNuclear;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NPi2018;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.321, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;5;;;;;;;;heat;Mix3;2025;xx_WP5_RAP-CP;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;ENC,EWN,ECS,ESC,ECE,FRA,DEU,UKI,ESW;;;;;;;; +# xx_WP5_RAP-CP-LimRES;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +xx_WP5_RAP-REG;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EU27_regi.tax.t.FE_wo_n_e.all 1.1235, (2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.321, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;;;;;;;;;;;;;; +xx_WP5_RAP-REG-LimBio;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EU27_regi.tax.t.FE_wo_n_e.all 1.1235, (2035,2040,2045,2050).GLO.tax.t.PE.biomass 3.17, (2035,2040,2045,2050).EUR_regi.tax.t.PE.biomass 0.22;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.321, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP5_RAP-REG;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; +xx_WP5_RAP-REG-LimCCS;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EU27_regi.tax.t.FE_wo_n_e.all 1.1235, (2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825, (2035,2040,2045,2050).GLO.tax.t.CCS.all 3000, (2035,2040,2045,2050).EUR_regi.tax.t.CCS.all 250;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.321, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP5_RAP-REG;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;;;;;;;;; +xx_WP5_RAP-REG-LimNuclear;0,WP5p3;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;2030.EU27_regi.tax.t.FE_wo_n_e.all 1.1235, (2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2040.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 0.321, 2045.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;5;;;;;;;;heat;Mix4;2025;xx_WP5_RAP-REG;xx_DIAG-NPI;xx_DIAG-NPI;;;on;;;;ENC,EWN,ECS,ESC,ECE,FRA,DEU,UKI,ESW;;;;;;;; +# xx_WP5_RAP-REG-LimRES;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# _____tests_____;0;;;;;;;;;;;;;;;;;;;;;;;;;;;;35.43046358;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +test_WP1_Nzero_DEU;0,WP1;;testOneRegi;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_DIAG-NPI;xx_DIAG-NPI;xx_DIAG-NPI;;same as xx_DIAG-Nzero;;;;;;;;;DEU;1;1;1; +xx_WP1_Nzero_highPrecision_10tCO2eq;0,test;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;same as xx_DIAG-Nzero;;;;;;;;;;;;;0.002 +xx_WP1_Nzero_highPrecision_5tCO2eq;0,test;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;same as xx_DIAG-Nzero;;;;;;;;;;;;;0.001 +xx_WP1_Nzero_highPrecision_1tCO2eq;0,test;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;same as xx_DIAG-Nzero;;;;;;;;;;;;;0.0002 +xx_WP1_Nzero_highPrecision_0p4tCO2eq;0,test;;;;./config/regionmapping_21_EU11.csv;./config/extramapping_EU27.csv;rcp20;9;globallyOptimal;650;diffCurvPhaseIn2Lin;100;2080;;9;;;;;;;;;;;;NDC;regiCarbonPrice;(2035,2040,2045,2050).EU27_regi.tax.t.PE.biomass 0.237825;2020.2030.EU27_regi.all.year.netGHG_LULUCFGrassi_intraRegBunker 2.122, 2035.2050.EU27_regi.all.year.netGHG_LULUCFGrassi 0.01;on;on;EUR_regi, NEU_regi;;;;;;;;;;;;;;;;heat;Mix4;2025;xx_WP1_Nzero;xx_DIAG-NPI;xx_DIAG-NPI;;same as xx_DIAG-Nzero;;;;;;;;;;;;;0.00008 diff --git a/config/scenario_config_DeepEl.csv b/config/scenario_config_DeepEl.csv index 59dc65b2f..2b96ddcf2 100644 --- a/config/scenario_config_DeepEl.csv +++ b/config/scenario_config_DeepEl.csv @@ -1,9 +1,9 @@ -title;start;CES_parameters;optimization;slurmConfig;cm_rcp_scen;cm_iterative_target_adj;subsidizeLearning;cm_VRE_supply_assumptions;cm_wasteIncinerationCCSshare;c_budgetCO2from2020;carbonprice;cm_co2_tax_2020;c_peakBudgYr;cm_CO2priceRegConvEndYr;cm_emiscen;c_tech_earlyreti_rate;cm_maxProdBiolc;c_ccsinjecratescen;techpol;regipol;cm_NucRegiPol;cm_CoalRegiPol;cm_multigasscen;cm_1stgen_phaseout;water;cm_EDGEtr_scen;cm_startyear;path_gdx;path_gdx_ref;path_gdx_bau;path_gdx_refpolicycost;description -testOneRegi-Base-DeepEl;0;;testOneRegi;8;;;;0;;;;;;;;;;;;;;;;;;;;;;;;testOneRegi-Base: This is a test scenario which only runs a single region, not to be used in production. -# H12 SSP2EU;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -SSP2EU-NPi-calibrate-DeepEl;1;calibrate;;14;rcp45;;;0;;0;NPi;1;2100;;9;;;;NPi2018;regiCarbonPrice;on;on;3;;heat;Mix1;2005;;;;;SSP2EU-NPi-calibrate: This reference policy/baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. -SSP2EU-Base-DeepEl;1;;;1;;;;0;;0;;;2100;;;off;;;;;;;;;heat;Mix1;2005;;;;;SSP2EU-Base: This baseline calibration scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. -SSP2EU-NPi-DeepEl;1;;;1;rcp45;3;;0;;0;NPi;1;2100;;9;;;;NPi2018;regiCarbonPrice;on;on;3;;heat;Mix1;2005;;;;;SSP2EU-NPi: This National Policies Implemented (Npi) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NPi is identical to the NDC scenario until 2020 but assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies. -SSP2EU-NDC-DeepEl;1;;;1;rcp45;3;globallyOptimal;0;;0;NDC;1;2100;;9;;;;NDC;regiCarbonPrice;on;on;3;;heat;Mix2;2025;;SSP2EU-NPi-DeepEl;SSP2EU-NPi-DeepEl;;SSP2EU-NDC: This Nationally Determined Contribution (NDC) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century. This scenario serves as reference for all other policy scenarios and The NPi scenario until 2020. -SSP2EU-PkBudg500-DeepEl;1;;;1;rcp20;9;globallyOptimal;1;2050.GLO 0.9;500;diffCurvPhaseIn2Lin;100;2080;;9;GLO.(biodiesel 0.14, bioeths 0.14), EUR_regi.(biodiesel 0.15, bioeths 0.15), USA_regi.pc 0.13, REF_regi.pc 0.13, CHA_regi.pc 0.13, IND_regi.pc 0.13;100;5;NDC;regiCarbonPrice;on;on;2;1;heat;Mix4;2025;;SSP2EU-NPi-DeepEl;SSP2EU-NPi-DeepEl;;SSP2EU-PkBudg500: This climate policy scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The stylized climate policy scenario assumes a peak budget of 500 Gt?CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5??C scenario, peak warming is allowed to be at or slightly above 1.5??C, at median climate sensitivity but returns to values below 1.5??C in at least 67?% of scenarios by the end of the century. -SSP2EU-PkBudg1150-DeepEl;1;;;1;rcp26;9;globallyOptimal;1;2050.GLO 0.5;1150;diffCurvPhaseIn2Lin;60;2100;;9;GLO.(biodiesel 0.14, bioeths 0.14), EUR_regi.(biodiesel 0.15, bioeths 0.15), USA_regi.pc 0.13, REF_regi.pc 0.13, CHA_regi.pc 0.13, IND_regi.pc 0.13;100;5;NDC;regiCarbonPrice;on;on;2;1;heat;Mix4;2025;;SSP2EU-NPi-DeepEl;SSP2EU-NPi-DeepEl;;SSP2EU-PkBudg1150: This climate policy scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The stylized climate policy scenario assumes a peak budget of 1150 Gt?CO2 on total CO2 emissions from 2015 to 2100. This is a weel below 2??C scenario, peak warming is allowed to be at or slightly above 2??C, at median climate sensitivity but returns to values below 2??C in at least 67?% of scenarios by the end of the century. +title;start;CES_parameters;optimization;slurmConfig;cm_rcp_scen;cm_iterative_target_adj;subsidizeLearning;cm_VRE_supply_assumptions;c_budgetCO2from2020;carbonprice;cm_co2_tax_2020;c_peakBudgYr;cm_CO2priceRegConvEndYr;cm_emiscen;c_tech_earlyreti_rate;cm_maxProdBiolc;c_ccsinjecratescen;techpol;regipol;cm_NucRegiPol;cm_CoalRegiPol;cm_multigasscen;cm_1stgen_phaseout;water;cm_EDGEtr_scen;cm_startyear;path_gdx;path_gdx_ref;path_gdx_bau;path_gdx_refpolicycost;description +testOneRegi-Base-DeepEl;0;;testOneRegi;8;;;;0;;;;;;;;;;;;;;;;;;;;;;;testOneRegi-Base: This is a test scenario which only runs a single region, not to be used in production. +# H12 SSP2EU;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +SSP2EU-NPi-calibrate-DeepEl;1;calibrate;;14;rcp45;;;0;0;NPi;1;2100;;9;;;;NPi2018;regiCarbonPrice;on;on;3;;heat;Mix1;2005;;;;;SSP2EU-NPi-calibrate: This reference policy/baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. +SSP2EU-Base-DeepEl;1;;;1;;;;0;0;;;2100;;;off;;;;;;;;;heat;Mix1;2005;;;;;SSP2EU-Base: This baseline calibration scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. +SSP2EU-NPi-DeepEl;1;;;1;rcp45;3;;0;0;NPi;1;2100;;9;;;;NPi2018;regiCarbonPrice;on;on;3;;heat;Mix1;2005;;;;;SSP2EU-NPi: This National Policies Implemented (Npi) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NPi is identical to the NDC scenario until 2020 but assumes that policies fail to achieve NDC targets in 2030. Instead, carbon prices are assumed to grow and converge more slowly, leading to emissions trajectories in line with bottom-up studies on the effect of currently implemented policies. +SSP2EU-NDC-DeepEl;1;;;1;rcp45;3;globallyOptimal;0;0;NDC;1;2100;;9;;;;NDC;regiCarbonPrice;on;on;3;;heat;Mix2;2025;;SSP2EU-NPi-DeepEl;SSP2EU-NPi-DeepEl;;SSP2EU-NDC: This Nationally Determined Contribution (NDC) scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The NDC includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the begining of 2021 continues over the 21st century. This scenario serves as reference for all other policy scenarios and The NPi scenario until 2020. +SSP2EU-PkBudg500-DeepEl;1;;;1;rcp20;9;globallyOptimal;1;500;diffCurvPhaseIn2Lin;100;2080;;9;GLO.(biodiesel 0.14, bioeths 0.14), EUR_regi.(biodiesel 0.15, bioeths 0.15), USA_regi.pc 0.13, REF_regi.pc 0.13, CHA_regi.pc 0.13, IND_regi.pc 0.13;100;5;NDC;regiCarbonPrice;on;on;2;1;heat;Mix4;2025;;SSP2EU-NPi-DeepEl;SSP2EU-NPi-DeepEl;;SSP2EU-PkBudg500: This climate policy scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The stylized climate policy scenario assumes a peak budget of 500 Gt?CO2 on total CO2 emissions from 2015 to 2100. This is a 1.5??C scenario, peak warming is allowed to be at or slightly above 1.5??C, at median climate sensitivity but returns to values below 1.5??C in at least 67?% of scenarios by the end of the century. +SSP2EU-PkBudg1150-DeepEl;1;;;1;rcp26;9;globallyOptimal;1;1150;diffCurvPhaseIn2Lin;60;2100;;9;GLO.(biodiesel 0.14, bioeths 0.14), EUR_regi.(biodiesel 0.15, bioeths 0.15), USA_regi.pc 0.13, REF_regi.pc 0.13, CHA_regi.pc 0.13, IND_regi.pc 0.13;100;5;NDC;regiCarbonPrice;on;on;2;1;heat;Mix4;2025;;SSP2EU-NPi-DeepEl;SSP2EU-NPi-DeepEl;;SSP2EU-PkBudg1150: This climate policy scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. The stylized climate policy scenario assumes a peak budget of 1150 Gt?CO2 on total CO2 emissions from 2015 to 2100. This is a weel below 2??C scenario, peak warming is allowed to be at or slightly above 2??C, at median climate sensitivity but returns to values below 2??C in at least 67?% of scenarios by the end of the century. diff --git a/config/scenario_config_ELEVATE4p4.csv b/config/scenario_config_ELEVATE4p4.csv index 7a8aa3984..f4114a580 100755 --- a/config/scenario_config_ELEVATE4p4.csv +++ b/config/scenario_config_ELEVATE4p4.csv @@ -1,26 +1,26 @@ -title;start;slurmConfig;climate;cm_import_tax;cm_taxrc_RE;cm_magicc_calibrateTemperature2000;cm_damage_KWSE;cm_magicc_config;cm_magicc_temperatureImpulseResponse;cm_damage_DiceLike_specification;cm_damages_BurkeLike_persistenceTime;cm_damages_BurkeLike_specification;cm_damages_SccHorizon;cm_VRE_supply_assumptions;c_CES_calibration_new_structure;buildings;transport;industry;cm_wasteIncinerationCCSshare;cm_DiscRateScen;c_shBioTrans;cm_EDGEtr_scen;cm_reducCostB;cm_CES_calibration_default_prices;c_ccsinjecratescen;.CDR;cm_bioenergy_SustTax;cm_rcp_scen;cm_iterative_target_adj;subsidizeLearning;cm_LearningSpillover;c_budgetCO2from2020;carbonprice;carbonpriceRegi;cm_netZeroScen;cm_co2_tax_2020;c_peakBudgYr;c_taxCO2inc_after_peakBudgYr;cm_CO2priceRegConvEndYr;cm_emiscen;c_regi_earlyreti_rate;c_tech_earlyreti_rate;cm_fetaxscen;cm_co2_tax_growth;cm_maxProdBiolc;c_ccscapratescen;techpol;c_techAssumptScen;cm_nucscen;cm_so2tax_scen;cm_multigasscen;cm_LU_emi_scen;cm_tradecostBio;cm_1stgen_phaseout;c_SSP_forcing_adjust;cm_APscen;water;cm_startyear;path_gdx_carbonprice;path_gdx;path_gdx_ref;path_gdx_bau;description -SSP2-Base_bIT;0;5;off;;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;15;0;100;0;0;simple;edge_esm;subsectors;;0;1;Mix1;none;0.01;1;off;1.5;none;0;off;1;0;none;none;;-1;2100;3;2050;1;;;3;1.05;off;1;none;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2005;;;;;SSP2-Base_bIT: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. -ELV_CurPol_nTecC_T44;1;5;off;;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;off;0;0;NPi;none;;1;2100;3;2050;9;;;3;1.05;100;1;NPi2018;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2005;;;;;ELV_CurPol_T44: The Current Policies scenarios describe energy, climate and economic projections for the period until 2030. -ELV_CurPol_T44;1;5;off;;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;off;1;0;NPi;none;;1;2100;3;2050;9;;;3;1.05;100;1;NPi2018;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2005;;;;;ELV_CurPol_T44: The Current Policies scenarios describe energy, climate and economic projections for the period until 2030. -ELV_NDC2030_T44;1;5;off;;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;globallyOptimal;1;0;NDC;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;;;ELV_CurPol_T44;ELV_CurPol_T44;ELV_NDC2030_T44: The NDCs scenario aims to represent the goals of each country or region defined in their NDCs. The ambition levels reached in the target year remains at least constant throughout the rest of the century. -ELV_NDC2030_nTecC_T44;1;5;off;;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;off;1;0;NDC;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;;;ELV_CurPol_T44;ELV_CurPol_T44;ELV_NDC2030_nTecC_T44: NDCs with no cooperation on technology learning (fixing the foreign capacity in technology learning to the level of 2020). -ELV_NPi2020_700_T44;0;5;off;;none;uncalibrated;0;RCP26_50;on;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.9;0;1;Mix3;heatpumps;0.01;1;off;1.5;rcp26;7;globallyOptimal;1;660;expoLinear;none;;100;2080;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;;;ELV_NDC2030_T44;;ELV_NPi2020_700f_T45: full century 1.5 degree C global scenario -ELV_NPi2020_700f_T44;0;5;off;;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.9;0;1;Mix3;heatpumps;0.01;1;off;1.5;rcp26;9;globallyOptimal;1;660;expoLinear;none;;100;2080;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;;;ELV_NDC2030_T44;;ELV_NPi2020_700f_T45: full century 1.5 degree C global scenario -ELV_NDC2030_intax_T44;1;5;off;GLO.(pecoal,pegas,peoil).CO2taxmarkup 1;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;globallyOptimal;1;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;ELV_NDC2030_T44;;ELV_CurPol_T44;;ELV_NDC2030_intax_T44: NDC with extra national tax on imported CO2 emissions (i.e emissions associated to imports of energy carriers) using national carbon tax as the value to tax imports. -ELV_NDC2030_intax_rc_T44;1;5;off;GLO.(pecoal,pegas,peoil).CO2taxmarkup 1;REdirect;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;globallyOptimal;1;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;ELV_NDC2030_T44;;ELV_NDC2030_intax_T44;;ELV_NDC2030_intax_rc_T44: same as NDC_intax but with import tax revenue recycling to additional investments in wind, solar and storage. -ELV_NDC2030_intax_nTecC_T44;1;5;off;GLO.(pecoal,pegas,peoil).CO2taxmarkup 1;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;off;0;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;ELV_NDC2030_T44;;ELV_CurPol_T44;;ELV_NDC2030_intax_nTecC_T44: NDC_intax and no cooperation on technology learning (fixing the foreign capacity in technology learning to the level of 2020). -ELV_NDC2030_intax_nTecC_rc_T44;1;5;off;GLO.(pecoal,pegas,peoil).CO2taxmarkup 1;REdirect;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;off;0;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;ELV_NDC2030_T44;;ELV_NDC2030_intax_nTecC_T44;;ELV_NDC2030_intax_nTecC_rc_T44: same as NDC_intax_nTecC but with import tax revenue recycling to additional investments in wind, solar and storage. -ELV_NDC2030_avtax_T44;1;5;off;GLO.(pecoal,pegas,peoil).avCO2taxmarkup 1;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;globallyOptimal;1;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;ELV_NDC2030_T44;;ELV_CurPol_T44;;ELV_NDC2030_avtax_T44: NDC with extra tax on imported CO2 emissions (i.e emissions associated to imports of energy carriers) using the max between average worldwide carbon tax or national carbon tax as the value to tax imports. -ELV_NDC2030_avtax_rc_T44;1;5;off;GLO.(pecoal,pegas,peoil).avCO2taxmarkup 1;REdirect;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;globallyOptimal;1;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;ELV_NDC2030_T44;;ELV_NDC2030_avtax_T44;;ELV_NDC2030_avtax_rc_T44: same as NDC_avtax but with import tax revenue recycling to additional investments in wind, solar and storage. -ELV_NDC2030_avtax_nTecC_T44;1;5;off;GLO.(pecoal,pegas,peoil).avCO2taxmarkup 1;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;off;0;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;ELV_NDC2030_T44;;ELV_CurPol_T44;;ELV_NDC2030_avtax_nTecC_T44: same as NDC_avtax and no cooperation on technology learning (fixing the foreign capacity in technology learning to the level of 2020). -ELV_NDC2030_avtax_nTecC_rc_T44;1;5;off;GLO.(pecoal,pegas,peoil).avCO2taxmarkup 1;REdirect;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;off;0;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;ELV_NDC2030_T44;;ELV_NDC2030_avtax_nTecC_T44;;ELV_NDC2030_avtax_nTecC_rc_T44: same as NDC_avtax_nTecC but with import tax revenue recycling to additional investments in wind, solar and storage. -ELV_LTS_T44;1;5;off;;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;globallyOptimal;1;0;NDC;netZero;NGFS_v4;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;;;ELV_NDC2030_T44;ELV_CurPol_T44;ELV_LTS_T44: High uncoordinated ambition (named as Glasgow in the ENGAGE 4.5 runs. The Glasgow scenario considers the NDC pledges and the mid-century strategy pledges (net-zero) announced at COP26 in Glasgow.) -ELV_LTS_nTecC_T44;1;5;off;;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;off;1;0;NDC;netZero;NGFS_v4;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;;;ELV_NDC2030_T44;ELV_CurPol_T44;ELV_LTS_nTecC_T44: LTS with no cooperation on technology learning. -ELV_LTS_intax_T44;1;5;off;GLO.(pecoal,pegas,peoil).CO2taxmarkup 1;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;globallyOptimal;1;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;ELV_LTS_T44;;ELV_NDC2030_intax_T44;;ELV_LTS_intax_T44: LTS with extra national tax on imported CO2 emissions (i.e emissions associated to imports of energy carriers) using national carbon tax as the value to tax imports. -ELV_LTS_intax_rc_T44;1;5;off;GLO.(pecoal,pegas,peoil).CO2taxmarkup 1;REdirect;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;globallyOptimal;1;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;ELV_LTS_T44;;ELV_LTS_intax_T44;;ELV_LTS_intax_rc_T44: same as LTS_intax but with import tax revenue recycling to additional investments in wind, solar and storage. -ELV_LTS_intax_nTecC_T44;1;5;off;GLO.(pecoal,pegas,peoil).CO2taxmarkup 1;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;off;0;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;ELV_LTS_T44;;ELV_NDC2030_intax_nTecC_T44;;ELV_LTS_intax_nTecC_T44: LTS_intax and no cooperation on technology learning (fixing the foreign capacity in technology learning to the level of 2020). -ELV_LTS_intax_nTecC_rc_T44;1;5;off;GLO.(pecoal,pegas,peoil).CO2taxmarkup 1;REdirect;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;off;0;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;ELV_LTS_T44;;ELV_LTS_intax_nTecC_T44;;ELV_LTS_intax_nTecC_rc_T44: LTS_intax_nTecC but with import tax revenue recycling to additional investments in wind, solar and storage. -ELV_LTS_avtax_T44;1;5;off;GLO.(pecoal,pegas,peoil).avCO2taxmarkup 1;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;globallyOptimal;1;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;ELV_LTS_T44;;ELV_NDC2030_avtax_T44;;ELV_LTS_avtax_T44: LTS with extra tax on imported CO2 emissions (i.e emissions associated to imports of energy carriers) using the max between average worldwide carbon tax or national carbon tax as the value to tax imports. -ELV_LTS_avtax_rc_T44;1;5;off;GLO.(pecoal,pegas,peoil).avCO2taxmarkup 1;REdirect;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;globallyOptimal;1;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;ELV_LTS_T44;;ELV_LTS_avtax_T44;;ELV_LTS_avtax_rc_T44: same as LTS_avtax but with import tax revenue recycling to additional investments in wind, solar and storage. -ELV_LTS_avtax_nTecC_T44;1;5;off;GLO.(pecoal,pegas,peoil).avCO2taxmarkup 1;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;off;0;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;ELV_LTS_T44;;ELV_NDC2030_avtax_nTecC_T44;;ELV_LTS_avtax_nTecC_T44: same as LTS_avtax and no cooperation on technology learning (fixing the foreign capacity in technology learning to the level of 2020). -ELV_LTS_avtax_nTecC_rc_T44;1;5;off;GLO.(pecoal,pegas,peoil).avCO2taxmarkup 1;REdirect;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;off;0;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;ELV_LTS_T44;ELV_LTS_avtax_nTecC_T44;ELV_LTS_avtax_nTecC_T44;;ELV_LTS_avtax_nTecC_rc_T44: LTS_avtax_nTecC but with import tax revenue recycling to additional investments in wind, solar and storage. +title;start;slurmConfig;climate;cm_import_tax;cm_taxrc_RE;cm_magicc_calibrateTemperature2000;cm_damage_KWSE;cm_magicc_config;cm_magicc_temperatureImpulseResponse;cm_damage_DiceLike_specification;cm_damages_BurkeLike_persistenceTime;cm_damages_BurkeLike_specification;cm_damages_SccHorizon;cm_VRE_supply_assumptions;c_CES_calibration_new_structure;buildings;transport;industry;cm_DiscRateScen;c_shBioTrans;cm_EDGEtr_scen;cm_reducCostB;cm_CES_calibration_default_prices;c_ccsinjecratescen;.CDR;cm_bioenergy_SustTax;cm_rcp_scen;cm_iterative_target_adj;subsidizeLearning;cm_LearningSpillover;c_budgetCO2from2020;carbonprice;carbonpriceRegi;cm_netZeroScen;cm_co2_tax_2020;c_peakBudgYr;c_taxCO2inc_after_peakBudgYr;cm_CO2priceRegConvEndYr;cm_emiscen;c_regi_earlyreti_rate;c_tech_earlyreti_rate;cm_fetaxscen;cm_co2_tax_growth;cm_maxProdBiolc;c_ccscapratescen;techpol;c_techAssumptScen;cm_nucscen;cm_so2tax_scen;cm_multigasscen;cm_LU_emi_scen;cm_tradecostBio;cm_1stgen_phaseout;c_SSP_forcing_adjust;cm_APscen;water;cm_startyear;path_gdx_carbonprice;path_gdx;path_gdx_ref;path_gdx_bau;description +SSP2-Base_bIT;0;5;off;;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;15;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix1;none;0.01;1;off;1.5;none;0;off;1;0;none;none;;-1;2100;3;2050;1;;;3;1.05;off;1;none;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2005;;;;;SSP2-Base_bIT: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. +ELV_CurPol_nTecC_T44;1;5;off;;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;off;0;0;NPi;none;;1;2100;3;2050;9;;;3;1.05;100;1;NPi2018;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2005;;;;;ELV_CurPol_T44: The Current Policies scenarios describe energy, climate and economic projections for the period until 2030. +ELV_CurPol_T44;1;5;off;;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;off;1;0;NPi;none;;1;2100;3;2050;9;;;3;1.05;100;1;NPi2018;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2005;;;;;ELV_CurPol_T44: The Current Policies scenarios describe energy, climate and economic projections for the period until 2030. +ELV_NDC2030_T44;1;5;off;;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;globallyOptimal;1;0;NDC;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;;;ELV_CurPol_T44;ELV_CurPol_T44;ELV_NDC2030_T44: The NDCs scenario aims to represent the goals of each country or region defined in their NDCs. The ambition levels reached in the target year remains at least constant throughout the rest of the century. +ELV_NDC2030_nTecC_T44;1;5;off;;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;off;1;0;NDC;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;;;ELV_CurPol_T44;ELV_CurPol_T44;ELV_NDC2030_nTecC_T44: NDCs with no cooperation on technology learning (fixing the foreign capacity in technology learning to the level of 2020). +ELV_NPi2020_700_T44;0;5;off;;none;uncalibrated;0;RCP26_50;on;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;heatpumps;0.01;1;off;1.5;rcp26;7;globallyOptimal;1;660;expoLinear;none;;100;2080;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;;;ELV_NDC2030_T44;;ELV_NPi2020_700f_T45: full century 1.5 degree C global scenario +ELV_NPi2020_700f_T44;0;5;off;;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;heatpumps;0.01;1;off;1.5;rcp26;9;globallyOptimal;1;660;expoLinear;none;;100;2080;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;;;ELV_NDC2030_T44;;ELV_NPi2020_700f_T45: full century 1.5 degree C global scenario +ELV_NDC2030_intax_T44;1;5;off;GLO.(pecoal,pegas,peoil).CO2taxmarkup 1;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;globallyOptimal;1;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;ELV_NDC2030_T44;;ELV_CurPol_T44;;ELV_NDC2030_intax_T44: NDC with extra national tax on imported CO2 emissions (i.e emissions associated to imports of energy carriers) using national carbon tax as the value to tax imports. +ELV_NDC2030_intax_rc_T44;1;5;off;GLO.(pecoal,pegas,peoil).CO2taxmarkup 1;REdirect;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;globallyOptimal;1;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;ELV_NDC2030_T44;;ELV_NDC2030_intax_T44;;ELV_NDC2030_intax_rc_T44: same as NDC_intax but with import tax revenue recycling to additional investments in wind, solar and storage. +ELV_NDC2030_intax_nTecC_T44;1;5;off;GLO.(pecoal,pegas,peoil).CO2taxmarkup 1;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;off;0;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;ELV_NDC2030_T44;;ELV_CurPol_T44;;ELV_NDC2030_intax_nTecC_T44: NDC_intax and no cooperation on technology learning (fixing the foreign capacity in technology learning to the level of 2020). +ELV_NDC2030_intax_nTecC_rc_T44;1;5;off;GLO.(pecoal,pegas,peoil).CO2taxmarkup 1;REdirect;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;off;0;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;ELV_NDC2030_T44;;ELV_NDC2030_intax_nTecC_T44;;ELV_NDC2030_intax_nTecC_rc_T44: same as NDC_intax_nTecC but with import tax revenue recycling to additional investments in wind, solar and storage. +ELV_NDC2030_avtax_T44;1;5;off;GLO.(pecoal,pegas,peoil).avCO2taxmarkup 1;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;globallyOptimal;1;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;ELV_NDC2030_T44;;ELV_CurPol_T44;;ELV_NDC2030_avtax_T44: NDC with extra tax on imported CO2 emissions (i.e emissions associated to imports of energy carriers) using the max between average worldwide carbon tax or national carbon tax as the value to tax imports. +ELV_NDC2030_avtax_rc_T44;1;5;off;GLO.(pecoal,pegas,peoil).avCO2taxmarkup 1;REdirect;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;globallyOptimal;1;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;ELV_NDC2030_T44;;ELV_NDC2030_avtax_T44;;ELV_NDC2030_avtax_rc_T44: same as NDC_avtax but with import tax revenue recycling to additional investments in wind, solar and storage. +ELV_NDC2030_avtax_nTecC_T44;1;5;off;GLO.(pecoal,pegas,peoil).avCO2taxmarkup 1;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;off;0;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;ELV_NDC2030_T44;;ELV_CurPol_T44;;ELV_NDC2030_avtax_nTecC_T44: same as NDC_avtax and no cooperation on technology learning (fixing the foreign capacity in technology learning to the level of 2020). +ELV_NDC2030_avtax_nTecC_rc_T44;1;5;off;GLO.(pecoal,pegas,peoil).avCO2taxmarkup 1;REdirect;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp45;3;off;0;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;ELV_NDC2030_T44;;ELV_NDC2030_avtax_nTecC_T44;;ELV_NDC2030_avtax_nTecC_rc_T44: same as NDC_avtax_nTecC but with import tax revenue recycling to additional investments in wind, solar and storage. +ELV_LTS_T44;1;5;off;;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;globallyOptimal;1;0;NDC;netZero;NGFS_v4;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;;;ELV_NDC2030_T44;ELV_CurPol_T44;ELV_LTS_T44: High uncoordinated ambition (named as Glasgow in the ENGAGE 4.5 runs. The Glasgow scenario considers the NDC pledges and the mid-century strategy pledges (net-zero) announced at COP26 in Glasgow.) +ELV_LTS_nTecC_T44;1;5;off;;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;off;1;0;NDC;netZero;NGFS_v4;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;;;ELV_NDC2030_T44;ELV_CurPol_T44;ELV_LTS_nTecC_T44: LTS with no cooperation on technology learning. +ELV_LTS_intax_T44;1;5;off;GLO.(pecoal,pegas,peoil).CO2taxmarkup 1;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;globallyOptimal;1;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;ELV_LTS_T44;;ELV_NDC2030_intax_T44;;ELV_LTS_intax_T44: LTS with extra national tax on imported CO2 emissions (i.e emissions associated to imports of energy carriers) using national carbon tax as the value to tax imports. +ELV_LTS_intax_rc_T44;1;5;off;GLO.(pecoal,pegas,peoil).CO2taxmarkup 1;REdirect;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;globallyOptimal;1;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;ELV_LTS_T44;;ELV_LTS_intax_T44;;ELV_LTS_intax_rc_T44: same as LTS_intax but with import tax revenue recycling to additional investments in wind, solar and storage. +ELV_LTS_intax_nTecC_T44;1;5;off;GLO.(pecoal,pegas,peoil).CO2taxmarkup 1;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;off;0;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;ELV_LTS_T44;;ELV_NDC2030_intax_nTecC_T44;;ELV_LTS_intax_nTecC_T44: LTS_intax and no cooperation on technology learning (fixing the foreign capacity in technology learning to the level of 2020). +ELV_LTS_intax_nTecC_rc_T44;1;5;off;GLO.(pecoal,pegas,peoil).CO2taxmarkup 1;REdirect;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;off;0;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;ELV_LTS_T44;;ELV_LTS_intax_nTecC_T44;;ELV_LTS_intax_nTecC_rc_T44: LTS_intax_nTecC but with import tax revenue recycling to additional investments in wind, solar and storage. +ELV_LTS_avtax_T44;1;5;off;GLO.(pecoal,pegas,peoil).avCO2taxmarkup 1;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;globallyOptimal;1;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;ELV_LTS_T44;;ELV_NDC2030_avtax_T44;;ELV_LTS_avtax_T44: LTS with extra tax on imported CO2 emissions (i.e emissions associated to imports of energy carriers) using the max between average worldwide carbon tax or national carbon tax as the value to tax imports. +ELV_LTS_avtax_rc_T44;1;5;off;GLO.(pecoal,pegas,peoil).avCO2taxmarkup 1;REdirect;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;globallyOptimal;1;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;ELV_LTS_T44;;ELV_LTS_avtax_T44;;ELV_LTS_avtax_rc_T44: same as LTS_avtax but with import tax revenue recycling to additional investments in wind, solar and storage. +ELV_LTS_avtax_nTecC_T44;1;5;off;GLO.(pecoal,pegas,peoil).avCO2taxmarkup 1;none;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;off;0;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;ELV_LTS_T44;;ELV_NDC2030_avtax_nTecC_T44;;ELV_LTS_avtax_nTecC_T44: same as LTS_avtax and no cooperation on technology learning (fixing the foreign capacity in technology learning to the level of 2020). +ELV_LTS_avtax_nTecC_rc_T44;1;5;off;GLO.(pecoal,pegas,peoil).avCO2taxmarkup 1;REdirect;uncalibrated;0;RCP26_50;off;HowardNonCatastrophic;30;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;1;off;1.5;rcp26;3;off;0;0;exogenous;none;;1;2100;3;2050;9;;;3;1.05;100;1;NDC;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2030;ELV_LTS_T44;ELV_LTS_avtax_nTecC_T44;ELV_LTS_avtax_nTecC_T44;;ELV_LTS_avtax_nTecC_rc_T44: LTS_avtax_nTecC but with import tax revenue recycling to additional investments in wind, solar and storage. diff --git a/config/scenario_config_NGFS_v4.csv b/config/scenario_config_NGFS_v4.csv index 714eb5c93..b2a027a83 100644 --- a/config/scenario_config_NGFS_v4.csv +++ b/config/scenario_config_NGFS_v4.csv @@ -1,66 +1,66 @@ -title;start;copyConfigFrom;cm_import_tax;cm_demScen;cm_oil_scen;cm_gas_scen;cm_coal_scen;CES_parameters;slurmConfig;climate;downscaleTemperature;cm_magicc_calibrateTemperature2000;damages;cm_damage_KWSE;internalizeDamages;cm_magicc_config;cm_magicc_temperatureImpulseResponse;cm_damage_DiceLike_specification;cm_damages_BurkeLike_persistenceTime;cm_damages_BurkeLike_specification;cm_damages_SccHorizon;cm_VRE_supply_assumptions;c_CES_calibration_new_structure;buildings;transport;industry;cm_wasteIncinerationCCSshare;cm_DiscRateScen;c_shBioTrans;cm_EDGEtr_scen;cm_reducCostB;cm_CES_calibration_default_prices;cm_CO2TaxSectorMarkup;c_ccsinjecratescen;c_ccsinjecrateRegi;cm_33DAC;cm_33EW;cm_bioenergy_SustTax;cm_rcp_scen;cm_iterative_target_adj;subsidizeLearning;c_budgetCO2from2020;carbonprice;carbonpriceRegi;regipol;cm_implicitQttyTarget;cm_NDC_version;cm_netZeroScen;cm_co2_tax_2020;c_peakBudgYr;c_taxCO2inc_after_peakBudgYr;cm_CO2priceRegConvEndYr;cm_emiscen;c_regi_earlyreti_rate;c_tech_earlyreti_rate;cm_fetaxscen;cm_co2_tax_growth;cm_maxProdBiolc;c_ccscapratescen;techpol;c_techAssumptScen;cm_nucscen;cm_so2tax_scen;cm_multigasscen;cm_LU_emi_scen;cm_tradecostBio;cm_1stgen_phaseout;c_SSP_forcing_adjust;cm_APscen;water;cm_startyear;path_gdx;path_gdx_ref;path_gdx_refpolicycost;path_gdx_bau;description -# ___Calibration___;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;initial value;initial value;;;;;;;;;;;;;;;;;;;;;;;;;; -SSP2-Base_covidCalib;0;;;gdp_SSP2EU;;;;calibrate;14;off;off;uncalibrated;off;0;off;OLDDEFAULT;off;HowardNonCatastrophic;15;0;100;0;1;simple;edge_esm;subsectors;;0;1;Mix3;none;0.01;;1;;;;1.5;none;0;off;0;none;none;;;;;-1;2100;3;2050;1;;;3;1.05;off;1;none;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2005;;;;; -SSP2-lowDem_calib;0;SSP2-Base_covidCalib;;gdp_SSP2_lowEn;;;;;1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -# ___Baselines___;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -SSP2-Base;NGFS;;;gdp_SSP2EU;medOil;medGas;medCoal;load;5;off;off;uncalibrated;off;0;off;RCP26_50;off;HowardNonCatastrophic;15;0;100;0;0;simple;edge_esm;subsectors;;0;1;Mix1;none;0.01;;1;;;;1.5;none;0;off;0;none;none;;;;;-1;2100;3;2050;1;;;3;1.05;off;1;none;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2005;;;;;SSP2-Base: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. -SSP2-Base_d50;0;SSP2-Base;;;;;;;;magicc;CMIP5;HADCRUT4;KWLike;0;;RCP26_50;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;;;SSP2-Base_d50: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. -SSP2-Base_d95;0;SSP2-Base;;;;;;;;magicc;CMIP5;HADCRUT4;KWLike;0;;RCP26_95;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;;;SSP2-Base_d95: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. -SSP2-Base_d50high;d50high;SSP2-Base;;;;;;;;magicc;CMIP5;HADCRUT4;KW_SE;1.96;;RCP26_50;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;;;SSP2-Base_d50: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. -SSP2-Base_d95high;d95high;SSP2-Base;;;;;;;;magicc;CMIP5;HADCRUT4;KW_SE;1.96;;RCP26_95;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;;;SSP2-Base_d95: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. -# ___NO_DAMAGES___;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -h_cpol;NGFS;SSP2-Base;EUR.pegas.worldPricemarkup 0.5;;;;;;;;;;;;;;;;30;;;;;;;;;;;Mix2;none;;;;;0;0;1.5;rcp45;3;off;0;NPi;none;;;;;1;2100;;2050;9;;;3;1.05;100;;NPi2018;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;;SSP2-Base;;;h_cpol: The Current Policies scenario assumes that only currently implemented policies are preserved, leading to high physical risks. Emissions grow until 2080 leading to about 3 K of warming and severe physical risks. This includes irreversible changes like higher sea level rise. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. -h_ndc;NGFS;h_cpol;;;;;;;;;;;;;;;;;;;;;;;;;;;;Mix3;none;;;1;;;;1.5;rcp45;3;globallyOptimal;0;NDC;none;;;;;1;2100;3;2050;;;;;;;;NDC;;;;3;;;;;;;2025;;h_cpol;h_cpol;SSP2-Base;h_ndc: The Nationally Determined Contributions (NDCs) scenario includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the beginning of 2021 continues over the 21st century (low transition risks). Emissions decline but lead nonetheless to about 2.5 K of warming associated with moderate to severe physical risks. Transition risks are relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. -o_1p5c;NGFS;h_cpol;;;;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.9;;;Mix4;heatpumps;;;1;;;;1.5;rcp20;9;globallyOptimal;560;diffCurvPhaseIn2Lin;netZero;regiCarbonPrice;2060.GLO.tax.t.CCS.biomass 4300, 2080.GLO.tax.t.CCS.biomass 4300;;;200;2045;6;2050;;;;;;;;NDC;;;;2;;;;;;;2025;;h_cpol;h_cpol;;o_1p5c: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. -o_lowdem;NGFS;o_1p5c;;gdp_SSP2_lowEn;;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.9;;;;;;;;GLO 0.00125, CAZ_regi 0.0045, CHA_regi 0.004, EUR_regi 0.0045, IND_regi 0.004, JPN_regi 0.002, USA_regi 0.002;;;;;;;560;diffCurvPhaseIn2Lin;netZero;regiCarbonPrice;2060.GLO.tax.t.CCS.biomass 3800, 2080.GLO.tax.t.CCS.biomass 3800;;;;;1;;;;;;;;;;;;;;;;;;;;2025;;h_cpol;h_cpol;;o_lowdem: Low Demand scenario -o_2c;NGFS;h_cpol;;;;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.5;;;Mix4;heatpumps;;;1;;;;1.5;rcp26;9;globallyOptimal;1050;diffCurvPhaseIn2Lin;netZero;;;;NGFS_v4_20pc;100;2080;3;2050;;;;;;;;NDC;;;;2;;;;;;;2025;;h_cpol;h_cpol;;o_2c: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. -d_delfrag;NGFS;h_cpol;;;;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.5;;;Mix3;heatpumps;;;;GLO 0.00125, CAZ_regi 0.0045, CHA_regi 0.004, EUR_regi 0.0045, IND_regi 0.004, JPN_regi 0.002, USA_regi 0.002;;;1.5;rcp26;9;globallyOptimal;1010;diffCurvPhaseIn2Lin;netZero;;;;;100;2080;;2050;;;;;;;;NDC;;;;2;;;;;;;2035;;h_cpol;h_cpol;;d_delfrag: The Delayed Transition scenario assumes global annual emissions do not decrease until 2030. Strong policies are then needed to limit warming to below 2 K. The level of action differs across countries and regions based on currently implemented policies, leading to a fossil recovery out of the economic crisis brought about by COVID-19. The availability of CDR technologies is assumed to be low. Emissions exceed the carbon budget temporarily and decline more rapidly than in Well-below 2 K after 2030 to ensure a 67 percent chance of limiting global warming to below 2 K. This leads to considerable transition and physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. -d_strain;NGFS;d_delfrag;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;GLO.trans 2, GLO.build 2;;;;;;;3;off;;NPi;netZero;;;;NGFS_v4_20pc;1;2100;;;;;;;;;;;;;;;;;;;;;2035;;h_cpol;h_cpol;;d_strain: Fragmented world -d_rap;0;h_cpol;;;;;;;;;;;;;;;;;;;;;;;;;2050.GLO 0.9;;;Mix4;heatpumps;;GLO.trans 2, GLO.build 2;2;;;;1.5;rcp20;9;globallyOptimal;560;diffCurvPhaseIn2Lin;none;;;;;200;2045;3;2050;;;;;;;;NDC;;;;2;;;;;;;2025;;h_cpol;h_cpol;;d_rap: The Divergent Net Zero scenario reaches net-zero by 2050 but with higher costs due to divergent policies introduced across sectors and a quicker phase out of fossil fuels. Climate policies are more stringent in the transportation and buildings sectors. This mimics a situation where the failure to coordinate policy stringency across sectors results in a high burden on consumers, while decarbonisation of energy supply and industry is less stringent. Emissions are in line with a climate goal giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. This leads to considerably high transition risks but rather low physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. -# ___WITH_DAMAGES___;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -h_cpol_d50;d50;h_cpol;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_cpol;h_cpol;;;h_cpol_d50: The Current Policies scenario assumes that only currently implemented policies are preserved, leading to high physical risks. Emissions grow until 2080 leading to about 3 K of warming and severe physical risks. This includes irreversible changes like higher sea level rise. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. -h_cpol_d95;d95;h_cpol;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_cpol;h_cpol;;;h_cpol_d95: The Current Policies scenario assumes that only currently implemented policies are preserved, leading to high physical risks. Emissions grow until 2080 leading to about 3 K of warming and severe physical risks. This includes irreversible changes like higher sea level rise. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. -h_cpol_d50high;d50high;h_cpol;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_cpol;h_cpol;;;h_cpol_d50high: The Current Policies scenario assumes that only currently implemented policies are preserved, leading to high physical risks. Emissions grow until 2080 leading to about 3 K of warming and severe physical risks. This includes irreversible changes like higher sea level rise. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. -h_cpol_d95high;d95high;h_cpol;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_cpol;h_cpol;;;h_cpol_d95high: The Current Policies scenario assumes that only currently implemented policies are preserved, leading to high physical risks. Emissions grow until 2080 leading to about 3 K of warming and severe physical risks. This includes irreversible changes like higher sea level rise. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. -h_ndc_d50;d50;h_ndc;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_ndc;h_cpol;h_cpol_d50;SSP2-Base;h_ndc_d50: The Nationally Determined Contributions (NDCs) scenario includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the beginning of 2021 continues over the 21st century (low transition risks). Emissions decline but lead nonetheless to about 2.5 K of warming associated with moderate to severe physical risks. Transition risks are relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. -h_ndc_d95;d95;h_ndc;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_ndc;h_cpol;h_cpol_d95;SSP2-Base;h_ndc_d95: The Nationally Determined Contributions (NDCs) scenario includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the beginning of 2021 continues over the 21st century (low transition risks). Emissions decline but lead nonetheless to about 2.5 K of warming associated with moderate to severe physical risks. Transition risks are relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. -h_ndc_d50high;d50high;h_ndc;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_ndc;h_cpol;h_cpol_d50high;SSP2-Base;h_ndc_d50high: The Nationally Determined Contributions (NDCs) scenario includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the beginning of 2021 continues over the 21st century (low transition risks). Emissions decline but lead nonetheless to about 2.5 K of warming associated with moderate to severe physical risks. Transition risks are relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. -h_ndc_d95high;d95high;h_ndc;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_ndc;h_cpol;h_cpol_d95high;SSP2-Base;h_ndc_d95high: The Nationally Determined Contributions (NDCs) scenario includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the beginning of 2021 continues over the 21st century (low transition risks). Emissions decline but lead nonetheless to about 2.5 K of warming associated with moderate to severe physical risks. Transition risks are relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. -o_1p5c_d50;d50;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol;h_cpol_d50;;o_1p5c_d50: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -o_1p5c_d95;d95;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol;h_cpol_d95;;o_1p5c_d95: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -o_1p5c_d50high;d50high;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol;h_cpol_d50high;;o_1p5c_d50high: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -o_1p5c_d95high;d95high;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol;h_cpol_d95high;;o_1p5c_d95high: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -o_1p5c_d50_cpricereg;0;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItrCPreg;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol;h_cpol;;o_1p5c_d50_cpricereg: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -o_1p5c_d95_cpricereg;0;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItrCPreg;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol;h_cpol;;o_1p5c_d95_cpricereg: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -o_1p5c_dni50;0;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol;h_cpol;;o_1p5c_dni50: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. -o_1p5c_dni95;0;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol;h_cpol;;o_1p5c_dni95: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. -o_lowdem_d50;d50;o_lowdem;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_lowdem;h_cpol;h_cpol_d50;;o_lowdem_d50 -o_lowdem_d95;d95;o_lowdem;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_lowdem;h_cpol;h_cpol_d95;;o_lowdem_d95 -o_lowdem_d50high;d50high;o_lowdem;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_lowdem;h_cpol;h_cpol_d50high;;o_lowdem_d50high -o_lowdem_d95high;d95high;o_lowdem;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_lowdem;h_cpol;h_cpol_d95high;;o_lowdem_d95high -o_2c_d50;d50;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol_d50;;o_2c_d50: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -o_2c_d95;d95;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol_d95;;o_2c_d95: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -o_2c_d50high;d50high;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol_d50high;;o_2c_d50high: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -o_2c_d95high;d95high;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;1;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol_d95high;;o_2c_d95high: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -o_2c_d50_cpricereg;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItrCPreg;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol;;o_2c_d50_cpricereg: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. The Social Cost of Carbon is regional rather than globally uniform. -o_2c_d95_cpricereg;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItrCPreg;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol;;o_2c_d95_cpricereg: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. The Social Cost of Carbon is regional rather than globally uniform. -o_2c_dni50;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol;;o_2c_dni50: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. -o_2c_dni50_fixCprice;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_50;off;;15;;;;;;;;2050.GLO 0.5;;;;;;;;;;;;;0;;1050;exogenous;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol;;o_2c_dni50_fixCprice: a test run fixing the carbon price to the one from the fully integrated o_2c_d50 scenario -o_2c_fixCprice;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;off;0;off;RCP26_50;off;;15;;;;;;;;2050.GLO 0.5;;;;;;;;;;;;;0;;1050;exogenous;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol;;o_2c_fixCprice: a test run fixing the carbon price to the one from the fully integrated o_2c scenario -o_2c_dni95;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol;;o_2c_dni95: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. -d_delfrag_d50;d50;d_delfrag;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_delfrag;h_cpol;h_cpol_d50;;d_delfrag_d50: The Delayed Transition scenario assumes global annual emissions do not decrease until 2030. Strong policies are then needed to limit warming to below 2 K. The level of action differs across countries and regions based on currently implemented policies, leading to a fossil recovery out of the economic crisis brought about by COVID-19. The availability of CDR technologies is assumed to be low. Emissions exceed the carbon budget temporarily and decline more rapidly than in Well-below 2 K after 2030 to ensure a 67 percent chance of limiting global warming to below 2 K. This leads to considerable transition and physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -d_delfrag_d95;d95;d_delfrag;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_delfrag;h_cpol;h_cpol_d95;;d_delfrag_d95: The Delayed Transition scenario assumes global annual emissions do not decrease until 2030. Strong policies are then needed to limit warming to below 2 K. The level of action differs across countries and regions based on currently implemented policies, leading to a fossil recovery out of the economic crisis brought about by COVID-19. The availability of CDR technologies is assumed to be low. Emissions exceed the carbon budget temporarily and decline more rapidly than in Well-below 2 K after 2030 to ensure a 67 percent chance of limiting global warming to below 2 K. This leads to considerable transition and physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -d_delfrag_d50high;d50high;d_delfrag;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_delfrag;h_cpol;h_cpol_d50high;;d_delfrag_d50high: The Delayed Transition scenario assumes global annual emissions do not decrease until 2030. Strong policies are then needed to limit warming to below 2 K. The level of action differs across countries and regions based on currently implemented policies, leading to a fossil recovery out of the economic crisis brought about by COVID-19. The availability of CDR technologies is assumed to be low. Emissions exceed the carbon budget temporarily and decline more rapidly than in Well-below 2 K after 2030 to ensure a 67 percent chance of limiting global warming to below 2 K. This leads to considerable transition and physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -d_delfrag_d95high;d95high;d_delfrag;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_delfrag;h_cpol;h_cpol_d95high;;d_delfrag_d95high: The Delayed Transition scenario assumes global annual emissions do not decrease until 2030. Strong policies are then needed to limit warming to below 2 K. The level of action differs across countries and regions based on currently implemented policies, leading to a fossil recovery out of the economic crisis brought about by COVID-19. The availability of CDR technologies is assumed to be low. Emissions exceed the carbon budget temporarily and decline more rapidly than in Well-below 2 K after 2030 to ensure a 67 percent chance of limiting global warming to below 2 K. This leads to considerable transition and physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -d_strain_d50;d50;d_strain;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_strain;h_cpol;h_cpol_d50;;d_strain_d50: Fragmented World -d_strain_d95;d95;d_strain;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_strain;h_cpol;h_cpol_d95;;d_strain_d95: Fragmented World -d_strain_d50high;d50high;d_strain;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_strain;h_cpol;h_cpol_d50high;;d_strain_d50high: Fragmented World -d_strain_d95high;d95high;d_strain;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_strain;h_cpol;h_cpol_d95high;;d_strain_d95high: Fragmented World -d_rap_d50;d50;d_rap;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;h_cpol;h_cpol_d50;;d_rap_d50: The Divergent Net Zero scenario reaches net-zero by 2050 but with higher costs due to divergent policies introduced across sectors and a quicker phase out of fossil fuels. Climate policies are more stringent in the transportation and buildings sectors. This mimics a situation where the failure to coordinate policy stringency across sectors results in a high burden on consumers, while decarbonisation of energy supply and industry is less stringent. Emissions are in line with a climate goal giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. This leads to considerably high transition risks but rather low physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -d_rap_d95;d95;d_rap;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;h_cpol;h_cpol_d95;;d_rap_d95: The Divergent Net Zero scenario reaches net-zero by 2050 but with higher costs due to divergent policies introduced across sectors and a quicker phase out of fossil fuels. Climate policies are more stringent in the transportation and buildings sectors. This mimics a situation where the failure to coordinate policy stringency across sectors results in a high burden on consumers, while decarbonisation of energy supply and industry is less stringent. Emissions are in line with a climate goal giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. This leads to considerably high transition risks but rather low physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -d_rap_d50high;d50high;d_rap;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;h_cpol;h_cpol_d50high;;d_rap_d50high: The Divergent Net Zero scenario reaches net-zero by 2050 but with higher costs due to divergent policies introduced across sectors and a quicker phase out of fossil fuels. Climate policies are more stringent in the transportation and buildings sectors. This mimics a situation where the failure to coordinate policy stringency across sectors results in a high burden on consumers, while decarbonisation of energy supply and industry is less stringent. Emissions are in line with a climate goal giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. This leads to considerably high transition risks but rather low physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -d_rap_d95high;d95high;d_rap;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;h_cpol;h_cpol_d95high;;d_rap_d95high: The Divergent Net Zero scenario reaches net-zero by 2050 but with higher costs due to divergent policies introduced across sectors and a quicker phase out of fossil fuels. Climate policies are more stringent in the transportation and buildings sectors. This mimics a situation where the failure to coordinate policy stringency across sectors results in a high burden on consumers, while decarbonisation of energy supply and industry is less stringent. Emissions are in line with a climate goal giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. This leads to considerably high transition risks but rather low physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -o_cba_d50;d50;;;;;;;load;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;HowardNonCatastrophic;15;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix4;heatpumps;0.01;;1;;;;1.5;rcp26;0;globallyOptimal;1050;none;none;;;;;100;2080;3;2050;10;;;3;1.05;100;1;NDC;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;o_2c;h_cpol;h_cpol_d50;;o_cba_d50: Cost-benefit analysis, policy driven by Social Cost of Carbon only. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -o_cba_d95;d95;;;;;;;load;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;HowardNonCatastrophic;15;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix4;heatpumps;0.01;;1;;;;1.5;rcp26;0;globallyOptimal;1050;none;none;;;;;100;2080;3;2050;10;;;3;1.05;100;1;NDC;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;o_2c;h_cpol;h_cpol_d95;;o_cba_d95: Cost-benefit analysis, policy driven by Social Cost of Carbon only. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. -o_cba_d50high;d50high;;;;;;;load;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;HowardNonCatastrophic;15;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix4;heatpumps;0.01;;1;;;;1.5;rcp26;0;globallyOptimal;1050;none;none;;;;;100;2080;3;2050;10;;;3;1.05;100;1;NDC;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;o_2c;h_cpol;h_cpol_d50high;;o_cba_d50high: Cost-benefit analysis, policy driven by Social Cost of Carbon only. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. -o_cba_d95high;d95high;;;;;;;load;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;HowardNonCatastrophic;15;0;100;0;0;simple;edge_esm;subsectors;2050.GLO 0.5;0;1;Mix4;heatpumps;0.01;;1;;;;1.5;rcp26;0;globallyOptimal;1050;none;none;;;;;100;2080;3;2050;10;;;3;1.05;100;1;NDC;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;o_2c;h_cpol;h_cpol_d95high;;o_cba_d95high: Cost-benefit analysis, policy driven by Social Cost of Carbon only. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. +title;start;copyConfigFrom;cm_import_tax;cm_demScen;cm_oil_scen;cm_gas_scen;cm_coal_scen;CES_parameters;slurmConfig;climate;downscaleTemperature;cm_magicc_calibrateTemperature2000;damages;cm_damage_KWSE;internalizeDamages;cm_magicc_config;cm_magicc_temperatureImpulseResponse;cm_damage_DiceLike_specification;cm_damages_BurkeLike_persistenceTime;cm_damages_BurkeLike_specification;cm_damages_SccHorizon;cm_VRE_supply_assumptions;c_CES_calibration_new_structure;buildings;transport;industry;cm_DiscRateScen;c_shBioTrans;cm_EDGEtr_scen;cm_reducCostB;cm_CES_calibration_default_prices;cm_CO2TaxSectorMarkup;c_ccsinjecratescen;c_ccsinjecrateRegi;cm_33DAC;cm_33EW;cm_bioenergy_SustTax;cm_rcp_scen;cm_iterative_target_adj;subsidizeLearning;c_budgetCO2from2020;carbonprice;carbonpriceRegi;regipol;cm_implicitQttyTarget;cm_NDC_version;cm_netZeroScen;cm_co2_tax_2020;c_peakBudgYr;c_taxCO2inc_after_peakBudgYr;cm_CO2priceRegConvEndYr;cm_emiscen;c_regi_earlyreti_rate;c_tech_earlyreti_rate;cm_fetaxscen;cm_co2_tax_growth;cm_maxProdBiolc;c_ccscapratescen;techpol;c_techAssumptScen;cm_nucscen;cm_so2tax_scen;cm_multigasscen;cm_LU_emi_scen;cm_tradecostBio;cm_1stgen_phaseout;c_SSP_forcing_adjust;cm_APscen;water;cm_startyear;path_gdx;path_gdx_ref;path_gdx_refpolicycost;path_gdx_bau;description +# ___Calibration___;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;initial value;initial value;;;;;;;;;;;;;;;;;;;;;;;;;; +SSP2-Base_covidCalib;0;;;gdp_SSP2EU;;;;calibrate;14;off;off;uncalibrated;off;0;off;OLDDEFAULT;off;HowardNonCatastrophic;15;0;100;0;1;simple;edge_esm;subsectors;0;1;Mix3;none;0.01;;1;;;;1.5;none;0;off;0;none;none;;;;;-1;2100;3;2050;1;;;3;1.05;off;1;none;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2005;;;;; +SSP2-lowDem_calib;0;SSP2-Base_covidCalib;;gdp_SSP2_lowEn;;;;;1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +# ___Baselines___;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +SSP2-Base;NGFS;;;gdp_SSP2EU;medOil;medGas;medCoal;load;5;off;off;uncalibrated;off;0;off;RCP26_50;off;HowardNonCatastrophic;15;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix1;none;0.01;;1;;;;1.5;none;0;off;0;none;none;;;;;-1;2100;3;2050;1;;;3;1.05;off;1;none;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2005;;;;;SSP2-Base: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. +SSP2-Base_d50;0;SSP2-Base;;;;;;;;magicc;CMIP5;HADCRUT4;KWLike;0;;RCP26_50;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;;;SSP2-Base_d50: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. +SSP2-Base_d95;0;SSP2-Base;;;;;;;;magicc;CMIP5;HADCRUT4;KWLike;0;;RCP26_95;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;;;SSP2-Base_d95: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. +SSP2-Base_d50high;d50high;SSP2-Base;;;;;;;;magicc;CMIP5;HADCRUT4;KW_SE;1.96;;RCP26_50;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;;;SSP2-Base_d50: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. +SSP2-Base_d95high;d95high;SSP2-Base;;;;;;;;magicc;CMIP5;HADCRUT4;KW_SE;1.96;;RCP26_95;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;;;SSP2-Base_d95: This baseline scenario follows the Shared Socioeconomic Pathways 2 called Middle of the Road. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. +# ___NO_DAMAGES___;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +h_cpol;NGFS;SSP2-Base;EUR.pegas.worldPricemarkup 0.5;;;;;;;;;;;;;;;;30;;;;;;;;;;Mix2;none;;;;;0;0;1.5;rcp45;3;off;0;NPi;none;;;;;1;2100;;2050;9;;;3;1.05;100;;NPi2018;1;2;1;3;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;;SSP2-Base;;;h_cpol: The Current Policies scenario assumes that only currently implemented policies are preserved, leading to high physical risks. Emissions grow until 2080 leading to about 3 K of warming and severe physical risks. This includes irreversible changes like higher sea level rise. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. +h_ndc;NGFS;h_cpol;;;;;;;;;;;;;;;;;;;;;;;;;;;Mix3;none;;;1;;;;1.5;rcp45;3;globallyOptimal;0;NDC;none;;;;;1;2100;3;2050;;;;;;;;NDC;;;;3;;;;;;;2025;;h_cpol;h_cpol;SSP2-Base;h_ndc: The Nationally Determined Contributions (NDCs) scenario includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the beginning of 2021 continues over the 21st century (low transition risks). Emissions decline but lead nonetheless to about 2.5 K of warming associated with moderate to severe physical risks. Transition risks are relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. +o_1p5c;NGFS;h_cpol;;;;;;;;;;;;;;;;;;;;;;;;;;;Mix4;heatpumps;;;1;;;;1.5;rcp20;9;globallyOptimal;560;diffCurvPhaseIn2Lin;netZero;regiCarbonPrice;2060.GLO.tax.t.CCS.biomass 4300, 2080.GLO.tax.t.CCS.biomass 4300;;;200;2045;6;2050;;;;;;;;NDC;;;;2;;;;;;;2025;;h_cpol;h_cpol;;o_1p5c: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. +o_lowdem;NGFS;o_1p5c;;gdp_SSP2_lowEn;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;GLO 0.00125, CAZ_regi 0.0045, CHA_regi 0.004, EUR_regi 0.0045, IND_regi 0.004, JPN_regi 0.002, USA_regi 0.002;;;;;;;560;diffCurvPhaseIn2Lin;netZero;regiCarbonPrice;2060.GLO.tax.t.CCS.biomass 3800, 2080.GLO.tax.t.CCS.biomass 3800;;;;;1;;;;;;;;;;;;;;;;;;;;2025;;h_cpol;h_cpol;;o_lowdem: Low Demand scenario +o_2c;NGFS;h_cpol;;;;;;;;;;;;;;;;;;;;;;;;;;;Mix4;heatpumps;;;1;;;;1.5;rcp26;9;globallyOptimal;1050;diffCurvPhaseIn2Lin;netZero;;;;NGFS_v4_20pc;100;2080;3;2050;;;;;;;;NDC;;;;2;;;;;;;2025;;h_cpol;h_cpol;;o_2c: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. +d_delfrag;NGFS;h_cpol;;;;;;;;;;;;;;;;;;;;;;;;;;;Mix3;heatpumps;;;;GLO 0.00125, CAZ_regi 0.0045, CHA_regi 0.004, EUR_regi 0.0045, IND_regi 0.004, JPN_regi 0.002, USA_regi 0.002;;;1.5;rcp26;9;globallyOptimal;1010;diffCurvPhaseIn2Lin;netZero;;;;;100;2080;;2050;;;;;;;;NDC;;;;2;;;;;;;2035;;h_cpol;h_cpol;;d_delfrag: The Delayed Transition scenario assumes global annual emissions do not decrease until 2030. Strong policies are then needed to limit warming to below 2 K. The level of action differs across countries and regions based on currently implemented policies, leading to a fossil recovery out of the economic crisis brought about by COVID-19. The availability of CDR technologies is assumed to be low. Emissions exceed the carbon budget temporarily and decline more rapidly than in Well-below 2 K after 2030 to ensure a 67 percent chance of limiting global warming to below 2 K. This leads to considerable transition and physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. +d_strain;NGFS;d_delfrag;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;GLO.trans 2, GLO.build 2;;;;;;;3;off;;NPi;netZero;;;;NGFS_v4_20pc;1;2100;;;;;;;;;;;;;;;;;;;;;2035;;h_cpol;h_cpol;;d_strain: Fragmented world +d_rap;0;h_cpol;;;;;;;;;;;;;;;;;;;;;;;;;;;Mix4;heatpumps;;GLO.trans 2, GLO.build 2;2;;;;1.5;rcp20;9;globallyOptimal;560;diffCurvPhaseIn2Lin;none;;;;;200;2045;3;2050;;;;;;;;NDC;;;;2;;;;;;;2025;;h_cpol;h_cpol;;d_rap: The Divergent Net Zero scenario reaches net-zero by 2050 but with higher costs due to divergent policies introduced across sectors and a quicker phase out of fossil fuels. Climate policies are more stringent in the transportation and buildings sectors. This mimics a situation where the failure to coordinate policy stringency across sectors results in a high burden on consumers, while decarbonisation of energy supply and industry is less stringent. Emissions are in line with a climate goal giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. This leads to considerably high transition risks but rather low physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. No Damages from climate change are considered. +# ___WITH_DAMAGES___;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +h_cpol_d50;d50;h_cpol;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_cpol;h_cpol;;;h_cpol_d50: The Current Policies scenario assumes that only currently implemented policies are preserved, leading to high physical risks. Emissions grow until 2080 leading to about 3 K of warming and severe physical risks. This includes irreversible changes like higher sea level rise. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. +h_cpol_d95;d95;h_cpol;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_cpol;h_cpol;;;h_cpol_d95: The Current Policies scenario assumes that only currently implemented policies are preserved, leading to high physical risks. Emissions grow until 2080 leading to about 3 K of warming and severe physical risks. This includes irreversible changes like higher sea level rise. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. +h_cpol_d50high;d50high;h_cpol;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_cpol;h_cpol;;;h_cpol_d50high: The Current Policies scenario assumes that only currently implemented policies are preserved, leading to high physical risks. Emissions grow until 2080 leading to about 3 K of warming and severe physical risks. This includes irreversible changes like higher sea level rise. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. +h_cpol_d95high;d95high;h_cpol;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_cpol;h_cpol;;;h_cpol_d95high: The Current Policies scenario assumes that only currently implemented policies are preserved, leading to high physical risks. Emissions grow until 2080 leading to about 3 K of warming and severe physical risks. This includes irreversible changes like higher sea level rise. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. +h_ndc_d50;d50;h_ndc;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_ndc;h_cpol;h_cpol_d50;SSP2-Base;h_ndc_d50: The Nationally Determined Contributions (NDCs) scenario includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the beginning of 2021 continues over the 21st century (low transition risks). Emissions decline but lead nonetheless to about 2.5 K of warming associated with moderate to severe physical risks. Transition risks are relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. +h_ndc_d95;d95;h_ndc;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_ndc;h_cpol;h_cpol_d95;SSP2-Base;h_ndc_d95: The Nationally Determined Contributions (NDCs) scenario includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the beginning of 2021 continues over the 21st century (low transition risks). Emissions decline but lead nonetheless to about 2.5 K of warming associated with moderate to severe physical risks. Transition risks are relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. +h_ndc_d50high;d50high;h_ndc;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_ndc;h_cpol;h_cpol_d50high;SSP2-Base;h_ndc_d50high: The Nationally Determined Contributions (NDCs) scenario includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the beginning of 2021 continues over the 21st century (low transition risks). Emissions decline but lead nonetheless to about 2.5 K of warming associated with moderate to severe physical risks. Transition risks are relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. +h_ndc_d95high;d95high;h_ndc;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2025;h_ndc;h_cpol;h_cpol_d95high;SSP2-Base;h_ndc_d95high: The Nationally Determined Contributions (NDCs) scenario includes all pledged policies even if not yet implemented. It assumes that the moderate and heterogeneous climate ambition reflected in the NDCs at the beginning of 2021 continues over the 21st century (low transition risks). Emissions decline but lead nonetheless to about 2.5 K of warming associated with moderate to severe physical risks. Transition risks are relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. +o_1p5c_d50;d50;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol;h_cpol_d50;;o_1p5c_d50: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. +o_1p5c_d95;d95;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol;h_cpol_d95;;o_1p5c_d95: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. +o_1p5c_d50high;d50high;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol;h_cpol_d50high;;o_1p5c_d50high: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. +o_1p5c_d95high;d95high;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol;h_cpol_d95high;;o_1p5c_d95high: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. +o_1p5c_d50_cpricereg;0;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItrCPreg;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol;h_cpol;;o_1p5c_d50_cpricereg: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. +o_1p5c_d95_cpricereg;0;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItrCPreg;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol;h_cpol;;o_1p5c_d95_cpricereg: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. +o_1p5c_dni50;0;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol;h_cpol;;o_1p5c_dni50: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. +o_1p5c_dni95;0;o_1p5c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_1p5c;h_cpol;h_cpol;;o_1p5c_dni95: The Net Zero 2050 scenario assumes that ambitious climate policies are introduced immediately, giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. Stringent climate policies and innovation let net zero CO2 emissions to be reached around 2050. CDR is used to accelerate the decarbonisation but kept to the minimum possible and broadly in line with sustainable levels of bioenergy production. Physical risks are relatively low but transition risks are high. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. +o_lowdem_d50;d50;o_lowdem;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_lowdem;h_cpol;h_cpol_d50;;o_lowdem_d50 +o_lowdem_d95;d95;o_lowdem;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_lowdem;h_cpol;h_cpol_d95;;o_lowdem_d95 +o_lowdem_d50high;d50high;o_lowdem;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_lowdem;h_cpol;h_cpol_d50high;;o_lowdem_d50high +o_lowdem_d95high;d95high;o_lowdem;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_lowdem;h_cpol;h_cpol_d95high;;o_lowdem_d95high +o_2c_d50;d50;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol_d50;;o_2c_d50: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. +o_2c_d95;d95;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol_d95;;o_2c_d95: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. +o_2c_d50high;d50high;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol_d50high;;o_2c_d50high: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. +o_2c_d95high;d95high;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;1;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol_d95high;;o_2c_d95high: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. +o_2c_d50_cpricereg;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItrCPreg;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol;;o_2c_d50_cpricereg: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. The Social Cost of Carbon is regional rather than globally uniform. +o_2c_d95_cpricereg;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItrCPreg;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol;;o_2c_d95_cpricereg: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. The Social Cost of Carbon is regional rather than globally uniform. +o_2c_dni50;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol;;o_2c_dni50: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 50th percentile of RCP26. +o_2c_dni50_fixCprice;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;0;;1050;exogenous;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol;;o_2c_dni50_fixCprice: a test run fixing the carbon price to the one from the fully integrated o_2c_d50 scenario +o_2c_fixCprice;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;off;0;off;RCP26_50;off;;15;;;;;;;;;;;;;;;;;;;;0;;1050;exogenous;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol;;o_2c_fixCprice: a test run fixing the carbon price to the one from the fully integrated o_2c scenario +o_2c_dni95;0;o_2c;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;off;RCP26_95;off;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o_2c;h_cpol;h_cpol;;o_2c_dni95: The Below 2 Degrees C scenario assumes that climate policies are introduced immediately and become gradually more stringent, giving a 67 percent chance of limiting global warming to below 2 K. Deployment of CDR is relatively low. Net-zero CO2 emissions are achieved after 2070. Physical and transition risks are both relatively low. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change are based on Kalkuhl and Wenz (2020) using the 95th percentile of RCP26. +d_delfrag_d50;d50;d_delfrag;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_delfrag;h_cpol;h_cpol_d50;;d_delfrag_d50: The Delayed Transition scenario assumes global annual emissions do not decrease until 2030. Strong policies are then needed to limit warming to below 2 K. The level of action differs across countries and regions based on currently implemented policies, leading to a fossil recovery out of the economic crisis brought about by COVID-19. The availability of CDR technologies is assumed to be low. Emissions exceed the carbon budget temporarily and decline more rapidly than in Well-below 2 K after 2030 to ensure a 67 percent chance of limiting global warming to below 2 K. This leads to considerable transition and physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. +d_delfrag_d95;d95;d_delfrag;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_delfrag;h_cpol;h_cpol_d95;;d_delfrag_d95: The Delayed Transition scenario assumes global annual emissions do not decrease until 2030. Strong policies are then needed to limit warming to below 2 K. The level of action differs across countries and regions based on currently implemented policies, leading to a fossil recovery out of the economic crisis brought about by COVID-19. The availability of CDR technologies is assumed to be low. Emissions exceed the carbon budget temporarily and decline more rapidly than in Well-below 2 K after 2030 to ensure a 67 percent chance of limiting global warming to below 2 K. This leads to considerable transition and physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. +d_delfrag_d50high;d50high;d_delfrag;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_delfrag;h_cpol;h_cpol_d50high;;d_delfrag_d50high: The Delayed Transition scenario assumes global annual emissions do not decrease until 2030. Strong policies are then needed to limit warming to below 2 K. The level of action differs across countries and regions based on currently implemented policies, leading to a fossil recovery out of the economic crisis brought about by COVID-19. The availability of CDR technologies is assumed to be low. Emissions exceed the carbon budget temporarily and decline more rapidly than in Well-below 2 K after 2030 to ensure a 67 percent chance of limiting global warming to below 2 K. This leads to considerable transition and physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. +d_delfrag_d95high;d95high;d_delfrag;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_delfrag;h_cpol;h_cpol_d95high;;d_delfrag_d95high: The Delayed Transition scenario assumes global annual emissions do not decrease until 2030. Strong policies are then needed to limit warming to below 2 K. The level of action differs across countries and regions based on currently implemented policies, leading to a fossil recovery out of the economic crisis brought about by COVID-19. The availability of CDR technologies is assumed to be low. Emissions exceed the carbon budget temporarily and decline more rapidly than in Well-below 2 K after 2030 to ensure a 67 percent chance of limiting global warming to below 2 K. This leads to considerable transition and physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. +d_strain_d50;d50;d_strain;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_strain;h_cpol;h_cpol_d50;;d_strain_d50: Fragmented World +d_strain_d95;d95;d_strain;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_strain;h_cpol;h_cpol_d95;;d_strain_d95: Fragmented World +d_strain_d50high;d50high;d_strain;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_strain;h_cpol;h_cpol_d50high;;d_strain_d50high: Fragmented World +d_strain_d95high;d95high;d_strain;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;d_strain;h_cpol;h_cpol_d95high;;d_strain_d95high: Fragmented World +d_rap_d50;d50;d_rap;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;h_cpol;h_cpol_d50;;d_rap_d50: The Divergent Net Zero scenario reaches net-zero by 2050 but with higher costs due to divergent policies introduced across sectors and a quicker phase out of fossil fuels. Climate policies are more stringent in the transportation and buildings sectors. This mimics a situation where the failure to coordinate policy stringency across sectors results in a high burden on consumers, while decarbonisation of energy supply and industry is less stringent. Emissions are in line with a climate goal giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. This leads to considerably high transition risks but rather low physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. +d_rap_d95;d95;d_rap;;;;;;;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;h_cpol;h_cpol_d95;;d_rap_d95: The Divergent Net Zero scenario reaches net-zero by 2050 but with higher costs due to divergent policies introduced across sectors and a quicker phase out of fossil fuels. Climate policies are more stringent in the transportation and buildings sectors. This mimics a situation where the failure to coordinate policy stringency across sectors results in a high burden on consumers, while decarbonisation of energy supply and industry is less stringent. Emissions are in line with a climate goal giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. This leads to considerably high transition risks but rather low physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. +d_rap_d50high;d50high;d_rap;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;h_cpol;h_cpol_d50high;;d_rap_d50high: The Divergent Net Zero scenario reaches net-zero by 2050 but with higher costs due to divergent policies introduced across sectors and a quicker phase out of fossil fuels. Climate policies are more stringent in the transportation and buildings sectors. This mimics a situation where the failure to coordinate policy stringency across sectors results in a high burden on consumers, while decarbonisation of energy supply and industry is less stringent. Emissions are in line with a climate goal giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. This leads to considerably high transition risks but rather low physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. +d_rap_d95high;d95high;d_rap;;;;;;;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;;15;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;SSP2-Base;h_cpol;h_cpol_d95high;;d_rap_d95high: The Divergent Net Zero scenario reaches net-zero by 2050 but with higher costs due to divergent policies introduced across sectors and a quicker phase out of fossil fuels. Climate policies are more stringent in the transportation and buildings sectors. This mimics a situation where the failure to coordinate policy stringency across sectors results in a high burden on consumers, while decarbonisation of energy supply and industry is less stringent. Emissions are in line with a climate goal giving at least a 50 percent chance of limiting global warming to below 1.5 K by the end of the century, with no or low overshoot of 1.5 K in earlier years. This leads to considerably high transition risks but rather low physical risks. Industry sectors are modeled explicitly with individual CES nests for cement, chemicals, steel, and other production. The transport model EDGE-T with detailed modes/vehicles representation is used. A simple buildings model represents demand in terms of energy carriers. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. +o_cba_d50;d50;;;;;;;load;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_50;on;HowardNonCatastrophic;15;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix4;heatpumps;0.01;;1;;;;1.5;rcp26;0;globallyOptimal;1050;none;none;;;;;100;2080;3;2050;10;;;3;1.05;100;1;NDC;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;o_2c;h_cpol;h_cpol_d50;;o_cba_d50: Cost-benefit analysis, policy driven by Social Cost of Carbon only. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. +o_cba_d95;d95;;;;;;;load;14;magicc;CMIP5;HADCRUT4;KWLike;0;KWlikeItr;RCP26_95;on;HowardNonCatastrophic;15;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix4;heatpumps;0.01;;1;;;;1.5;rcp26;0;globallyOptimal;1050;none;none;;;;;100;2080;3;2050;10;;;3;1.05;100;1;NDC;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;o_2c;h_cpol;h_cpol_d95;;o_cba_d95: Cost-benefit analysis, policy driven by Social Cost of Carbon only. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. +o_cba_d50high;d50high;;;;;;;load;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_50;on;HowardNonCatastrophic;15;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix4;heatpumps;0.01;;1;;;;1.5;rcp26;0;globallyOptimal;1050;none;none;;;;;100;2080;3;2050;10;;;3;1.05;100;1;NDC;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;o_2c;h_cpol;h_cpol_d50high;;o_cba_d50high: Cost-benefit analysis, policy driven by Social Cost of Carbon only. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 50th percentile of RCP26. +o_cba_d95high;d95high;;;;;;;load;14;magicc;CMIP5;HADCRUT4;KW_SE;1.96;KW_SEitr;RCP26_95;on;HowardNonCatastrophic;15;0;100;0;0;simple;edge_esm;subsectors;0;1;Mix4;heatpumps;0.01;;1;;;;1.5;rcp26;0;globallyOptimal;1050;none;none;;;;;100;2080;3;2050;10;;;3;1.05;100;1;NDC;1;2;1;2;SSP2;1;0;forcing_SSP2;SSP2;heat;2025;o_2c;h_cpol;h_cpol_d95high;;o_cba_d95high: Cost-benefit analysis, policy driven by Social Cost of Carbon only. Damages from climate change based on Kalkuhl and Wenz (2020) are internalized in the optimization using the 95th percentile of RCP26. diff --git a/core/equations.gms b/core/equations.gms index 41f694a2c..0bd0ae008 100644 --- a/core/equations.gms +++ b/core/equations.gms @@ -590,7 +590,7 @@ q_emiTeMkt(t,regi,emiTe(enty),emiMkt) .. )$( sameas(enty,"co2") ) !! add emissions from plastics incineration. CHECK FOR DOUBLE-COUNTING RISK + sum(entyFE2sector2emiMkt_NonEn(entyFe,"indst",emiMkt), - sum(se2fe(entySe,entyFe,te), + sum(sefe(entySe,entyFe), vm_incinerationEmi(t,regi,entySe,entyFe,emiMkt) ) )$( sameas(enty,"co2") ) diff --git a/main.gms b/main.gms index e663cf46a..937a11af3 100755 --- a/main.gms +++ b/main.gms @@ -1555,11 +1555,6 @@ $setGlobal cm_CESMkup_build standard !! def = standard *** addressed in cm_CESMkup_ind_data. $setGlobal cm_CESMkup_ind standard !! def = standard $setGlobal cm_CESMkup_ind_data "" !! def = "" -*** cm_wasteIncinerationCCSshare, proportion of waste incineration emissions that is captured and geologically stored at a given year and region -*** off: means that all plastics incineration emissions in the World goes back to the atmosphere. -*** 2050.GLO 0.5, 2050.EUR 0.8: means that 50% of waste incineration emissions are captured for all regions from 2050 onward, except for Europe that has 80% of its waste incineration emissions captured. -*** The CCS share of waste incineration increases linearly from zero, in 2025, to the value set at the switch, and it is kept constant for years afterwards. -$setglobal cm_wasteIncinerationCCSshare off !! def = off *** cm_feedstockEmiUnknownFate, account for chemical feedstock emissions with unknown fate *** off: assume that these emissions are trapped and do not account for total anthropogenic emissions *** on: account for chemical feedstock emissions with unknown fate as re-emitted to the atmosphere diff --git a/modules/37_industry/subsectors/datainput.gms b/modules/37_industry/subsectors/datainput.gms index 5a4967037..981543741 100644 --- a/modules/37_industry/subsectors/datainput.gms +++ b/modules/37_industry/subsectors/datainput.gms @@ -550,16 +550,6 @@ execute_load "input_ref.gdx", vm_demFeSector_afterTax; ); ); -* Define carbon capture and storage share in waste incineration emissions -* capture rate increases linearly from zero in 2025 to value the set in the switch for the defined year, and it is kept constant for years afterwards -p37_regionalWasteIncinerationCCSshare(ttot,all_regi) = 0; -$ifthen.cm_wasteIncinerationCCSshare not "%cm_wasteIncinerationCCSshare%" == "off" -loop((ttot,ext_regi)$p37_wasteIncinerationCCSshare(ttot,ext_regi), - loop(regi$regi_groupExt(ext_regi,regi), - p37_regionalWasteIncinerationCCSshare(t,regi)$((t.val gt 2025)) = min(p37_wasteIncinerationCCSshare(ttot,ext_regi), (p37_wasteIncinerationCCSshare(ttot,ext_regi)/(ttot.val - 2025))*(t.val-2025)); - ); -); -$endIf.cm_wasteIncinerationCCSshare *** --------------------------------------------------------------------------- *** 2. Process-Based diff --git a/modules/37_industry/subsectors/declarations.gms b/modules/37_industry/subsectors/declarations.gms index 668b90964..6822d76ac 100644 --- a/modules/37_industry/subsectors/declarations.gms +++ b/modules/37_industry/subsectors/declarations.gms @@ -64,12 +64,6 @@ $ifthen.sec_steel_scen NOT "%cm_steel_secondary_max_share_scenario%" == "off" p37_steel_secondary_max_share_scenario(tall,all_regi) "scenario limits on share of secondary steel production" / %cm_steel_secondary_max_share_scenario% / $endif.sec_steel_scen - - p37_regionalWasteIncinerationCCSshare(ttot,all_regi) "regional proportion of waste incineration that is captured [%]" -$ifthen.cm_wasteIncinerationCCSshare not "%cm_wasteIncinerationCCSshare%" == "off" - p37_wasteIncinerationCCSshare(ttot,ext_regi) "switch values for proportion of waste incineration that is captured [%]" - / %cm_wasteIncinerationCCSshare% / -$endIf.cm_wasteIncinerationCCSshare ; Positive Variables diff --git a/modules/37_industry/subsectors/equations.gms b/modules/37_industry/subsectors/equations.gms index d3499bfa5..5a0012e82 100644 --- a/modules/37_industry/subsectors/equations.gms +++ b/modules/37_industry/subsectors/equations.gms @@ -107,6 +107,10 @@ q37_emiIndBase(t,regi,entyFe,secInd37) .. ) )$(NOT secInd37Prc(secInd37)) + + sum((sefe(entySe,entyFe),secInd37_emiMkt(secInd37,emiMkt)), + vm_incinerationEmi(t,regi,entySe,entyFe,emiMkt) + )$( sameas(secInd37,"chemicals") ) + + sum((secInd37_tePrc(secInd37,tePrc),tePrc2opmoPrc(tePrc,opmoPrc)), v37_emiPrc(t,regi,entyFe,tePrc,opmoPrc) )$(secInd37Prc(secInd37)) @@ -291,10 +295,8 @@ q37_incinerationEmi(t,regi,sefe(entySe,entyFe),emiMkt)$( entyFE2sector2emiMkt_NonEn(entyFe,"indst",emiMkt)) .. vm_incinerationEmi(t,regi,entySe,entyFe,emiMkt) =e= - ( v37_plasticWaste(t,regi,entySe,entyFe,emiMkt) * pm_incinerationRate(t,regi) - ) * (1 - p37_regionalWasteIncinerationCCSshare(t,regi)) ; *' calculate carbon contained in non-incinerated plastics From 35151a7f27d89967904d984c972fd28ec0793809 Mon Sep 17 00:00:00 2001 From: Michaja Pehl Date: Tue, 30 Apr 2024 15:15:51 +0200 Subject: [PATCH 2/9] separate incineration emi before and after CCS to ease reporting --- core/declarations.gms | 6 +-- core/equations.gms | 34 ++++++++-------- modules/37_industry/fixed_shares/not_used.txt | 35 +++++++++-------- .../37_industry/fixed_shares/postsolve.gms | 15 +++++-- .../37_industry/subsectors/declarations.gms | 2 + modules/37_industry/subsectors/equations.gms | 39 +++++++++---------- modules/37_industry/subsectors/postsolve.gms | 26 ++++++++----- 7 files changed, 86 insertions(+), 71 deletions(-) diff --git a/core/declarations.gms b/core/declarations.gms index 31c26cf98..dc5f438ad 100644 --- a/core/declarations.gms +++ b/core/declarations.gms @@ -415,9 +415,9 @@ v_shGasLiq_fe(ttot,all_regi,emi_sectors) "share of gases and liquids vm_emiCdrAll(ttot,all_regi) "all CDR emissions" -vm_feedstockEmiUnknownFate(ttot,all_regi,all_enty,all_enty,all_emiMkt) "Carbon flow: carbon contained in feedstocks with unknown fate (not plastics)(assumed to go back into the atmosphere) [GtC]" -vm_incinerationEmi(ttot,all_regi,all_enty,all_enty,all_emiMkt) "Emissions from incineration of plastic waste [GtC]" -vm_nonIncineratedPlastics(ttot,all_regi,all_enty,all_enty,all_emiMkt) "Carbon flow: carbon contained in plastics that are not incinerated [GtC]" +vm_feedstockEmiUnknownFate(ttot,all_regi,all_enty,all_enty,all_emiMkt) "Carbon flow: carbon contained in feedstocks with unknown fate (not plastics)(assumed to go back into the atmosphere) [GtC]" +vm_incinerationEmi_Base(ttot,all_regi,all_enty,all_enty,all_emiMkt) "Emissions from incineration of plastic waste, before CCS [GtC]" +vm_nonIncineratedPlastics(ttot,all_regi,all_enty,all_enty,all_emiMkt) "Carbon flow: carbon contained in plastics that are not incinerated [GtC]" v_changeProdStartyearAdj(ttot,all_regi,all_te) "Absolute effect size of changing output with respect to the reference run for each te" vm_changeProdStartyearCost(ttot,all_regi,all_te) "Costs for changing output with respect to the reference run for each te" diff --git a/core/equations.gms b/core/equations.gms index 0bd0ae008..07775f6c7 100644 --- a/core/equations.gms +++ b/core/equations.gms @@ -576,29 +576,27 @@ q_emiTeMkt(t,regi,emiTe(enty),emiMkt) .. vm_emiTeDetailMkt(t,regi,enty2,enty3,te,enty,emiMkt) ) !! energy emissions fuel extraction - + v_emiEnFuelEx(t,regi,enty)$(sameas(emiMkt,"ETS")) + + v_emiEnFuelEx(t,regi,enty)$( sameas(emiMkt,"ETS") ) !! Industry CCS emissions - - sum(emiInd37_fuel, - vm_emiIndCCS(t,regi,emiInd37_fuel) - )$( sameas(enty,"co2") AND sameas(emiMkt,"ETS")) + - sum(emiInd37_fuel, + vm_emiIndCCS(t,regi,emiInd37_fuel) + )$( sameas(enty,"co2") AND sameas(emiMkt,"ETS") ) !! substract carbon from biogenic or synthetic origin contained in !! plastics that don't get incinerated ("plastic removals") - - sum(entyFE2sector2emiMkt_NonEn(entyFe,"indst",emiMkt), - sum(se2fe(entySe,entyFe,te)$( entySeBio(entySe) OR entySeSyn(entySe) ), - vm_nonIncineratedPlastics(t,regi,entySe,entyFe,emiMkt) - ) + - sum((entyFE2sector2emiMkt_NonEn(entyFe,"indst",emiMkt), + se2fe(entySe,entyFe,te))$( entySeBio(entySe) OR entySeSyn(entySe) ), + vm_nonIncineratedPlastics(t,regi,entySe,entyFe,emiMkt) )$( sameas(enty,"co2") ) - !! add emissions from plastics incineration. CHECK FOR DOUBLE-COUNTING RISK - + sum(entyFE2sector2emiMkt_NonEn(entyFe,"indst",emiMkt), - sum(sefe(entySe,entyFe), - vm_incinerationEmi(t,regi,entySe,entyFe,emiMkt) - ) + !! add emissions from plastics incineration before CCS + !! (CCS emissions are subtracted via vm_emiIndCCS) + + sum((entyFE2sector2emiMkt_NonEn(entyFe,"indst",emiMkt), + sefe(entySe,entyFe)), + vm_incinerationEmi_Base(t,regi,entySe,entyFe,emiMkt) )$( sameas(enty,"co2") ) !! add emissions from chemical feedstock with unknown fate - + sum(entyFE2sector2emiMkt_NonEn(entyFe,"indst",emiMkt), - sum(se2fe(entySe,entyFe,te), - vm_feedstockEmiUnknownFate(t,regi,entySe,entyFe,emiMkt) - ) + + sum((entyFE2sector2emiMkt_NonEn(entyFe,"indst",emiMkt), + se2fe(entySe,entyFe,te)), + vm_feedstockEmiUnknownFate(t,regi,entySe,entyFe,emiMkt) )$( sameas(enty,"co2") ) !! Valve from cco2 capture step, to mangage if capture capacity and CCU/CCS !! capacity don't have the same lifetime @@ -607,7 +605,7 @@ q_emiTeMkt(t,regi,emiTe(enty),emiMkt) .. !! period shorter than 5 years) + sum(teCCU2rlf(te2,rlf), vm_co2CCUshort(t,regi,"cco2","ccuco2short",te2,rlf)$( sameas(enty,"co2") ) - )$(sameas(emiMkt,"ETS")) + )$( sameas(emiMkt,"ETS") ) ; ***-------------------------------------------------- diff --git a/modules/37_industry/fixed_shares/not_used.txt b/modules/37_industry/fixed_shares/not_used.txt index 2073258d5..753d1a654 100644 --- a/modules/37_industry/fixed_shares/not_used.txt +++ b/modules/37_industry/fixed_shares/not_used.txt @@ -5,31 +5,32 @@ # | REMIND License Exception, version 1.0 (see LICENSE file). # | Contact: remind@pik-potsdam.de name, type, reason -pm_delta_kap, input, questionnaire +cm_emiscen, parameter, not needed +o37_incinerationEmi, parameter, not needed pm_calibrate_eff_scale, parameter, not needed -pm_fedemand, parameter, not needed -sm_TWa_2_MWh, input, questionnaire -sm_giga_2_non, input, not needed -sm_EJ_2_TWa, input, not needed -sm_tmp2, parameter, not needed -vm_cap, variable, not needed -vm_capFac, variable, not needed -pm_tau_ces_tax, input, questionnaire -pm_secBioShare, parameter, not needed +pm_delta_kap, input, questionnaire +pm_emifacNonEnergy, parameter, not needed pm_exogDemScen, input, added by codeCheck -pm_ts, parameter, not needed +pm_fedemand, parameter, not needed +pm_incinerationRate, parameter, not needed pm_outflowPrcIni, parameter, not needed +pm_secBioShare, parameter, not needed pm_specFeDem, parameter, not needed +pm_tau_ces_tax, input, questionnaire +pm_ts, parameter, not needed +sm_EJ_2_TWa, input, not needed +sm_giga_2_non, input, not needed sm_macChange, parameter, not needed -vm_demFENonEnergySector, variable, not needed +sm_tmp2, parameter, not needed +sm_TWa_2_MWh, input, questionnaire v37_FeedstocksCarbon, variable, not needed v37_plasticsCarbon, variable, not needed v37_plasticWaste, variable, not needed +vm_capFac, variable, not needed +vm_cap, variable, not needed +vm_costMatPrc, variable, not needed +vm_demFENonEnergySector, variable, not needed vm_feedstockEmiUnknownFate, variable, not needed -vm_incinerationEmi, variable, not needed +vm_incinerationEmi_Base, variable, not needed vm_nonIncineratedPlastics, variable, not needed vm_outflowPrc, variable, not needed -vm_costMatPrc, variable, not needed -pm_emifacNonEnergy, parameter, not needed -pm_incinerationRate, parameter, not needed -cm_emiscen, parameter, not needed diff --git a/modules/37_industry/fixed_shares/postsolve.gms b/modules/37_industry/fixed_shares/postsolve.gms index 025b91368..5c2336331 100644 --- a/modules/37_industry/fixed_shares/postsolve.gms +++ b/modules/37_industry/fixed_shares/postsolve.gms @@ -28,7 +28,7 @@ o37_demFeIndSub(ttot,regi,entySe,entyFe,secInd37,emiMkt) *** industry captured fuel CO2 pm_IndstCO2Captured(ttot,regi,entySe,entyFe(entyFeCC37),secInd37,emiMkt)$( emiInd37_fe2sec(entyFe,secInd37) - AND sum(entyFE2, vm_emiIndBase.l(ttot,regi,entyFE2,secInd37)) ) + AND sum(entyFe2, vm_emiIndBase.l(ttot,regi,entyFe2,secInd37)) ) = ( o37_demFeIndSub(ttot,regi,entySe,entyFe,secInd37,emiMkt) * sum(se2fe(entySE2,entyFe,te), !! collapse entySe dimension, so emission factors apply to all entyFe @@ -42,10 +42,19 @@ pm_IndstCO2Captured(ttot,regi,entySe,entyFe(entyFeCC37),secInd37,emiMkt)$( vm_emiIndCCS.l(ttot,regi,emiInd37) ) !! subsector captured energy emissions - / sum(entyFE2, - vm_emiIndBase.l(ttot,regi,entyFE2,secInd37) + / sum(entyFe2, + vm_emiIndBase.l(ttot,regi,entyFe2,secInd37) ) !! subsector total energy emissions ) !! subsector capture share ; +*** industry subsector capture share +o37_indCCSshare(ttot,regi,secInd37) + !! subsector captured energy emissions + = sum(secInd37_2_emiInd37(secInd37,emiInd37(emiInd37_fuel)), + vm_emiIndCCS.l(ttot,regi,emiInd37) + ) + !! subsector total energy emissions + / sum(entyFe2, vm_emiIndBase.l(ttot,regi,entyFe2,secInd37)); + *** EOF ./modules/37_industry/fixed_shares/postsolve.gms diff --git a/modules/37_industry/subsectors/declarations.gms b/modules/37_industry/subsectors/declarations.gms index 6822d76ac..131176ee2 100644 --- a/modules/37_industry/subsectors/declarations.gms +++ b/modules/37_industry/subsectors/declarations.gms @@ -45,6 +45,8 @@ Parameters *** output parameters only for reporting o37_cementProcessEmissions(ttot,all_regi,all_enty) "cement process emissions [GtC/a]" o37_demFeIndSub(ttot,all_regi,all_enty,all_enty,secInd37,all_emiMkt) "FE demand per industry subsector" + o37_indCCSshare(ttot,all_regi,secInd37) "industry subsector CCS capture share" + o37_incinerationEmi(ttot,all_regi,all_enty,all_enty,all_emiMkt) "Emissions from incineration of plastic waste, net of CCS [GtC]" !! process-based implementation o37_demFePrc(ttot,all_regi,all_enty,all_te,opmoPrc) "Process-based FE demand per FE type and process" o37_shareRoute(ttot,all_regi,all_te,opmoPrc,route) "The relative share (between 0 and 1) of a technology and operation mode outflow which belongs to a certain route; For example, bf.standard belongs partly to the route bfbof and partly to the route bfbof" diff --git a/modules/37_industry/subsectors/equations.gms b/modules/37_industry/subsectors/equations.gms index 5a0012e82..0a8f3b1d3 100644 --- a/modules/37_industry/subsectors/equations.gms +++ b/modules/37_industry/subsectors/equations.gms @@ -93,27 +93,25 @@ $endif.exogDem_scen *' accounting, just as a CCS baseline. ***------------------------------------------------------ q37_emiIndBase(t,regi,entyFe,secInd37) .. - vm_emiIndBase(t,regi,entyFe,secInd37) + vm_emiIndBase(t,regi,entyFe,secInd37) =e= - sum((secInd37_2_pf(secInd37,ppfen_industry_dyn37(in)),fe2ppfEn(entyFeCC37(entyFe),in)), + sum((secInd37_2_pf(secInd37,ppfen_industry_dyn37(in)), + fe2ppfEn(entyFeCC37(entyFe),in)), ( vm_cesIO(t,regi,in) - - ( p37_chemicals_feedstock_share(t,regi) - * vm_cesIO(t,regi,in) - )$( in_chemicals_feedstock_37(in) ) - ) - * - sum(se2fe(entySeFos,entyFe,te), - pm_emifac(t,regi,entySeFos,entyFe,te,"co2") + * ( 1 + - p37_chemicals_feedstock_share(t,regi)$( in_chemicals_feedstock_37(in) ) ) - )$(NOT secInd37Prc(secInd37)) - + - sum((sefe(entySe,entyFe),secInd37_emiMkt(secInd37,emiMkt)), - vm_incinerationEmi(t,regi,entySe,entyFe,emiMkt) - )$( sameas(secInd37,"chemicals") ) - + - sum((secInd37_tePrc(secInd37,tePrc),tePrc2opmoPrc(tePrc,opmoPrc)), - v37_emiPrc(t,regi,entyFe,tePrc,opmoPrc) - )$(secInd37Prc(secInd37)) + ) + * sum(se2fe(entySeFos,entyFe,te), + pm_emifac(t,regi,entySeFos,entyFe,te,"co2") + ) + )$( NOT secInd37Prc(secInd37) ) + + sum((sefe(entySe,entyFe),secInd37_emiMkt(secInd37,emiMkt)), + vm_incinerationEmi_Base(t,regi,entySe,entyFe,emiMkt) + )$( sameas(secInd37,"chemicals") ) + + sum((secInd37_tePrc(secInd37,tePrc),tePrc2opmoPrc(tePrc,opmoPrc)), + v37_emiPrc(t,regi,entyFe,tePrc,opmoPrc) + )$( secInd37Prc(secInd37) ) ; ***------------------------------------------------------ @@ -290,10 +288,11 @@ q37_plasticWaste(ttot,regi,sefe(entySe,entyFe),emiMkt)$( + v37_plasticsCarbon(ttot-1,regi,entySe,entyFe,emiMkt)$( ttot.val gt 2070 ) ; -*' emissions from plastics incineration as a share of total plastic waste, discounted by captured amount +*' emissions from plastics incineration as a share of total plastic waste, +*' before CCS q37_incinerationEmi(t,regi,sefe(entySe,entyFe),emiMkt)$( entyFE2sector2emiMkt_NonEn(entyFe,"indst",emiMkt)) .. - vm_incinerationEmi(t,regi,entySe,entyFe,emiMkt) + vm_incinerationEmi_Base(t,regi,entySe,entyFe,emiMkt) =e= v37_plasticWaste(t,regi,entySe,entyFe,emiMkt) * pm_incinerationRate(t,regi) diff --git a/modules/37_industry/subsectors/postsolve.gms b/modules/37_industry/subsectors/postsolve.gms index 6dd0baf5e..7de136a54 100644 --- a/modules/37_industry/subsectors/postsolve.gms +++ b/modules/37_industry/subsectors/postsolve.gms @@ -38,10 +38,20 @@ o37_demFeIndSub(ttot,regi,entySe,entyFe,secInd37,emiMkt)$( v37_demFeIndst.l(ttot,regi,entySe,entyFe,out,emiMkt) ); +*** industry subsector capture share +o37_indCCSshare(ttot,regi,secInd37) + !! subsector captured energy emissions + = ( sum(secInd37_2_emiInd37(secInd37,emiInd37(emiInd37_fuel)), + vm_emiIndCCS.l(ttot,regi,emiInd37) + ) + !! subsector total energy emissions + / sum(entyFe2, vm_emiIndBase.l(ttot,regi,entyFe2,secInd37)) + )$( sum(entyFe2, vm_emiIndBase.l(ttot,regi,entyFe2,secInd37)) ); + *** industry captured fuel CO2 pm_IndstCO2Captured(ttot,regi,entySe,entyFe(entyFeCC37),secInd37,emiMkt)$( emiInd37_fe2sec(entyFe,secInd37) - AND sum(entyFE2, vm_emiIndBase.l(ttot,regi,entyFE2,secInd37)) ) + AND sum(entyFe2, vm_emiIndBase.l(ttot,regi,entyFe2,secInd37)) ) = ( o37_demFeIndSub(ttot,regi,entySe,entyFe,secInd37,emiMkt) * sum(se2fe(entySE2,entyFe,te), !! collapse entySe dimension, so emission factors apply to all entyFe @@ -50,16 +60,12 @@ pm_IndstCO2Captured(ttot,regi,entySe,entyFe(entyFeCC37),secInd37,emiMkt)$( pm_emifac(ttot,regi,entySE2,entyFe,te,"co2") ) ) !! subsector emissions (smokestack, i.e. including biomass & synfuels) + * o37_indCCSshare(ttot,regi,secInd37); - * ( sum(secInd37_2_emiInd37(secInd37,emiInd37(emiInd37_fuel)), - vm_emiIndCCS.l(ttot,regi,emiInd37) - ) !! subsector captured energy emissions - - / sum(entyFE2, - vm_emiIndBase.l(ttot,regi,entyFE2,secInd37) - ) !! subsector total energy emissions - ) !! subsector capture share -; +*** Emissions from incineration of plastic waste, net of CCS +o37_incinerationEmi(ttot,regi,sefe(entySe,entyFe),emiMkt) + = vm_incinerationEmi_Base.l(ttot,regi,entySe,entyFe,emiMkt) + * (1 - o37_indCCSshare(ttot,regi,"chemicals")); *** --------------------------------------------------------------------------- From 41c9ad53c5bb5124e63b9886606e996405e8421c Mon Sep 17 00:00:00 2001 From: Michaja Pehl Date: Mon, 6 May 2024 14:03:36 +0200 Subject: [PATCH 3/9] stuff negative emission hole --- modules/37_industry/subsectors/equations.gms | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/modules/37_industry/subsectors/equations.gms b/modules/37_industry/subsectors/equations.gms index 0a8f3b1d3..216b893ed 100644 --- a/modules/37_industry/subsectors/equations.gms +++ b/modules/37_industry/subsectors/equations.gms @@ -106,7 +106,9 @@ q37_emiIndBase(t,regi,entyFe,secInd37) .. pm_emifac(t,regi,entySeFos,entyFe,te,"co2") ) )$( NOT secInd37Prc(secInd37) ) - + sum((sefe(entySe,entyFe),secInd37_emiMkt(secInd37,emiMkt)), + + sum((entyFeCC37(entyFe), + sefe(entySe,entyFe), + secInd37_emiMkt(secInd37,emiMkt)), vm_incinerationEmi_Base(t,regi,entySe,entyFe,emiMkt) )$( sameas(secInd37,"chemicals") ) + sum((secInd37_tePrc(secInd37,tePrc),tePrc2opmoPrc(tePrc,opmoPrc)), From c1a1b0da1e90d06a929273051e34a2193c5b43dd Mon Sep 17 00:00:00 2001 From: Jakob Duerrwaechter Date: Tue, 14 May 2024 14:29:42 +0200 Subject: [PATCH 4/9] make cement process emissions a function of ue_cement in the current iteration, such that CONOPT sees the incentive to reduce ue_cement --- core/presolve.gms | 62 ++++++++++---------- modules/37_industry/subsectors/equations.gms | 17 ++++-- modules/37_industry/subsectors/presolve.gms | 11 ---- 3 files changed, 42 insertions(+), 48 deletions(-) diff --git a/core/presolve.gms b/core/presolve.gms index 312c3f52a..2360bed79 100644 --- a/core/presolve.gms +++ b/core/presolve.gms @@ -117,14 +117,14 @@ loop(regi, p_priceCO2(ttot,regi) = pm_taxCO2eqSum(ttot,regi) * 1000; -*** Define co2 price for entities that are used in MAC. +*** Define co2 price for entities that are used in MAC. loop((enty,enty2)$emiMac2mac(enty,enty2), !! make sure that both mac sectors and mac curves have prices asigned as both sets are used in calculations below pm_priceCO2forMAC(ttot,regi,enty) = p_priceCO2(ttot,regi); pm_priceCO2forMAC(ttot,regi,enty2) = p_priceCO2(ttot,regi); ); *** Redefine the MAC price for regions with emission tax defined by the regipol module -$IFTHEN.emiMkt not "%cm_emiMktTarget%" == "off" +$IFTHEN.emiMkt not "%cm_emiMktTarget%" == "off" loop(ext_regi$regiEmiMktTarget(ext_regi), loop(regi$regi_groupExt(ext_regi,regi), *** average CO2 price aggregated by FE @@ -169,26 +169,26 @@ vm_macBase.fx(ttot,regi,"ch4wsts")$(ttot.val ge 2005) = p_emineg_econometric(reg vm_macBase.fx(ttot,regi,"ch4wstl")$(ttot.val ge 2005) = p_emineg_econometric(regi,"ch4wstl","p1") * pm_pop(ttot,regi) * (1000*pm_gdp(ttot,regi) / (pm_pop(ttot,regi)*pm_shPPPMER(regi)))**p_emineg_econometric(regi,"ch4wstl","p2"); vm_macBase.fx(ttot,regi,"n2owaste")$(ttot.val ge 2005) = p_emineg_econometric(regi,"n2owaste","p1") * pm_pop(ttot,regi) * (1000*pm_gdp(ttot,regi) / (pm_pop(ttot,regi)*pm_shPPPMER(regi)))**p_emineg_econometric(regi,"n2owaste","p2"); -vm_macBase.fx(ttot,regi,"co2cement_process")$( ttot.val ge 2005 ) - = ( pm_pop(ttot,regi) - * ( (1 - p_switch_cement(ttot,regi)) - * p_emineg_econometric(regi,"co2cement_process","p1") - * ( (1000 - * p_inv_gdx(ttot,regi) - / ( pm_pop(ttot,regi) - * pm_shPPPMER(regi) - ) - ) ** p_emineg_econometric(regi,"co2cement_process","p2") - ) - + ( p_switch_cement(ttot,regi) - * p_emineg_econometric(regi,"co2cement_process","p3") - ) - ) - )$(p_inv_gdx(ttot,regi) ne 0) -; - -vm_emiIndBase.fx(ttot,regi,"co2cement_process","cement")$( ttot.val ge 2005 ) -= vm_macBase.lo(ttot,regi,"co2cement_process"); +!! vm_macBase.fx(ttot,regi,"co2cement_process")$( ttot.val ge 2005 ) +!! = ( pm_pop(ttot,regi) +!! * ( (1 - p_switch_cement(ttot,regi)) +!! * p_emineg_econometric(regi,"co2cement_process","p1") +!! * ( (1000 +!! * p_inv_gdx(ttot,regi) +!! / ( pm_pop(ttot,regi) +!! * pm_shPPPMER(regi) +!! ) +!! ) ** p_emineg_econometric(regi,"co2cement_process","p2") +!! ) +!! + ( p_switch_cement(ttot,regi) +!! * p_emineg_econometric(regi,"co2cement_process","p3") +!! ) +!! ) +!! )$(p_inv_gdx(ttot,regi) ne 0) +!! ; +!! +!! vm_emiIndBase.fx(ttot,regi,"co2cement_process","cement")$( ttot.val ge 2005 ) +!! = vm_macBase.lo(ttot,regi,"co2cement_process"); * *** Reduction of cement demand due to CO2 price markups *** * if ( NOT (cm_IndCCSscen eq 1 AND cm_CCS_cement eq 1), @@ -202,7 +202,7 @@ if ( NOT (cm_IndCCSscen eq 1 AND cm_CCS_cement eq 1), display "CO2 price for computing Cement Demand Reduction [$/tC]", pm_CementAbatementPrice; - !! The demand reduction function a = 160 / (p + 200) + 0.2 assumes that demand + !! The demand reduction function a = 160 / (p + 200) + 0.2 assumes that demand !! for cement is reduced by 40% if the price doubles (CO2 price of $200) and !! that demand reductions of 80% can be achieved in the limit. pm_ResidualCementDemand("2005",regi) = 1; @@ -230,7 +230,7 @@ if ( NOT (cm_IndCCSscen eq 1 AND cm_CCS_cement eq 1), display "Cement Demand Reduction, price of limited reduction", pm_CementAbatementPrice; - !! Costs of cement demand reduction are the integral under the activity + !! Costs of cement demand reduction are the integral under the activity !! reduction curve times baseline emissions. !! a = 160 / (p + 200) + 0.2 !! A = 160 ln(p + 200) + 0.2p @@ -282,7 +282,7 @@ pm_macAbat(ttot,regi,enty,steps) ; pm_macAbat(ttot,regi,enty,steps)$(ttot.val gt 2100) = pm_macAbat("2100",regi,enty,steps); -*** Abatement options are in steps of length sm_dmac; options at zero price are +*** Abatement options are in steps of length sm_dmac; options at zero price are *** in the first step pm_macStep(ttot,regi,enty)$(MacSector(enty)) = min(801, ceil(pm_priceCO2forMAC(ttot,regi,enty) / sm_dmac) + 1); @@ -294,8 +294,8 @@ p_priceGas(ttot,regi)=q_balPe.m(ttot,regi,"pegas")/(qm_budget.m(ttot,regi)+sm_ep pm_macStep(ttot,regi,"ch4gas") = min(801, ceil(max(pm_priceCO2forMAC(ttot,regi,"ch4gas") * (25/s_gwpCH4), max(0,(p_priceGas(ttot,regi)-p_priceGas("2005",regi))) ) / sm_dmac) + 1); pm_macStep(ttot,regi,"ch4coal") - = min(801, ceil(max(pm_priceCO2forMAC(ttot,regi,"ch4coal") * (25/s_gwpCH4), 0.5 * max(0,(p_priceGas(ttot,regi)-p_priceGas("2005",regi))) ) / sm_dmac) + 1); - + = min(801, ceil(max(pm_priceCO2forMAC(ttot,regi,"ch4coal") * (25/s_gwpCH4), 0.5 * max(0,(p_priceGas(ttot,regi)-p_priceGas("2005",regi))) ) / sm_dmac) + 1); + *** limit yearly increase of MAC usage to sm_macChange p_macAbat_lim(ttot,regi,enty) = sum(steps$(ord(steps) eq pm_macStep(ttot-1,regi,enty)), @@ -304,7 +304,7 @@ p_macAbat_lim(ttot,regi,enty) + sm_macChange * pm_ts(ttot) ; -*** if intended abatement pm_macAbat is higher than this limit, pm_macStep has to +*** if intended abatement pm_macAbat is higher than this limit, pm_macStep has to *** be set to the highest step number where pm_macAbat is still lower or equal to *** this limit loop ((ttot,regi,MacSector(enty))$(NOT sameas(enty,"co2luc")), @@ -317,7 +317,7 @@ loop ((ttot,regi,MacSector(enty))$(NOT sameas(enty,"co2luc")), ); ); -*** In USA, EUR and JPN, abatement measures for CH4 emissions from waste started +*** In USA, EUR and JPN, abatement measures for CH4 emissions from waste started *** in 1990. These levels of abatement are enforced as a minimum in all *** scenarios including BAU. p_macUse2005(regi,enty) = 0.0; @@ -329,7 +329,7 @@ p_macUse2005(regi,"ch4wsts")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) ge 10) *** This includes sum of sub-categories from MAgPIE (see mapping emiMac2mac). pm_macAbat(ttot,regi,MacSectorMagpie(enty),"1") = 0; -*** phase in use of zero cost abatement options until 2040 if there is no +*** phase in use of zero cost abatement options until 2040 if there is no *** carbon price p_macLevFree(ttot,regi,enty)$( ttot.val gt 2005 ) = @@ -391,7 +391,7 @@ loop (ttot$( ttot.val ge 2015 ), Display "computed abatement levels at carbon price", pm_macAbatLev; - + ***-------------------------------------- *** MAC costs ***-------------------------------------- diff --git a/modules/37_industry/subsectors/equations.gms b/modules/37_industry/subsectors/equations.gms index 615662995..60d197564 100644 --- a/modules/37_industry/subsectors/equations.gms +++ b/modules/37_industry/subsectors/equations.gms @@ -81,23 +81,28 @@ $endif.exogDem_scen *' energy mix, as that is what can be captured); vm_emiIndBase itself is not used for emission *' accounting, just as a CCS baseline. ***------------------------------------------------------ -q37_emiIndBase(t,regi,entyFe,secInd37) .. - vm_emiIndBase(t,regi,entyFe,secInd37) +q37_emiIndBase(t,regi,enty,secInd37) .. + vm_emiIndBase(t,regi,enty,secInd37) =e= - sum((secInd37_2_pf(secInd37,ppfen_industry_dyn37(in)),fe2ppfEn(entyFeCC37(entyFe),in)), + sum((secInd37_2_pf(secInd37,ppfen_industry_dyn37(in)),fe2ppfEn(entyFeCC37(enty),in)), ( vm_cesIO(t,regi,in) - ( p37_chemicals_feedstock_share(t,regi) * vm_cesIO(t,regi,in) )$( in_chemicals_feedstock_37(in) ) ) * - sum(se2fe(entySeFos,entyFe,te), - pm_emifac(t,regi,entySeFos,entyFe,te,"co2") + sum(se2fe(entySeFos,enty,te), + pm_emifac(t,regi,entySeFos,enty,te,"co2") ) )$(NOT secInd37Prc(secInd37)) + + (s37_clinker_process_CO2 + * p37_clinker_cement_ratio(t,regi) + * vm_cesIO(t,regi,"ue_cement") + / sm_c_2_co2)$(sameas(enty,"co2cement_process") AND sameas(secInd37,"cement")) + + sum((secInd37_tePrc(secInd37,tePrc),tePrc2opmoPrc(tePrc,opmoPrc)), - v37_emiPrc(t,regi,entyFe,tePrc,opmoPrc) + v37_emiPrc(t,regi,enty,tePrc,opmoPrc) )$(secInd37Prc(secInd37)) ; diff --git a/modules/37_industry/subsectors/presolve.gms b/modules/37_industry/subsectors/presolve.gms index d18daabdb..556ebb4f1 100644 --- a/modules/37_industry/subsectors/presolve.gms +++ b/modules/37_industry/subsectors/presolve.gms @@ -6,17 +6,6 @@ *** | Contact: remind@pik-potsdam.de *** SOF ./modules/37_industry/subsectors/presolve.gms -*' The process emissions from cement production are calculated using a fixed -*' CO2-to-clinker ratio (0.5262 kg CO2/kg clinker), region-specific -*' clinker-to-cement ratios, and the cement production from the production -*' function. -*' Last iteration's cement production value is used, since the MAC mechanism is -*' outside of the optimisation loop. -vm_emiIndBase.fx(ttot,regi,"co2cement_process","cement")$( ttot.val ge 2005 ) - = s37_clinker_process_CO2 - * p37_clinker_cement_ratio(ttot,regi) - * vm_cesIO.l(ttot,regi,"ue_cement") - / sm_c_2_co2; ***p37_emiFac(ttot,regi,entyFe) = sum((entySe,te)$(se2fe(entySe,entyFe,te) and entySeFos(entySe)), pm_emifac(ttot,regi,entySe,entyFe,te,"co2")); From 79ecc69cd4f88e84d85db76509d5ac58f06071c2 Mon Sep 17 00:00:00 2001 From: Jakob Duerrwaechter Date: Wed, 15 May 2024 14:20:02 +0200 Subject: [PATCH 5/9] somewhat clean up industry ccs mac implementation --- core/datainput.gms | 3 - core/declarations.gms | 12 +- core/equations.gms | 2 +- core/presolve.gms | 88 +----------- .../37_industry/fixed_shares/declarations.gms | 2 + .../37_industry/fixed_shares/equations.gms | 90 ++++++------ modules/37_industry/fixed_shares/presolve.gms | 131 ++++++++++++++---- modules/37_industry/subsectors/bounds.gms | 1 - modules/37_industry/subsectors/datainput.gms | 8 +- modules/37_industry/subsectors/not_used.txt | 4 +- modules/37_industry/subsectors/presolve.gms | 1 - 11 files changed, 171 insertions(+), 171 deletions(-) diff --git a/core/datainput.gms b/core/datainput.gms index 56a6e8b53..c95722a28 100644 --- a/core/datainput.gms +++ b/core/datainput.gms @@ -1331,7 +1331,6 @@ if(c_macscen eq 2, if(c_macscen eq 1, pm_macSwitch(emiMacSector) = 1; ); -*pm_macCostSwitch(enty)=pm_macSwitch(enty); *** for NDC and NPi switch off landuse MACs $if %carbonprice% == "off" pm_macSwitch(emiMacMagpie) = 0; @@ -1359,8 +1358,6 @@ $if %cm_MAgPIE_coupling% == "off" pm_macSwitch("co2luc") = 0; $if %cm_MAgPIE_coupling% == "off" pm_macSwitch("n2ofertsom") = 0; pm_macCostSwitch(enty)=pm_macSwitch(enty); -pm_macSwitch("co2cement_process") =0 ; -pm_macCostSwitch("co2cement_process") =0 ; *** load econometric emission data *** read in p3 and p4 diff --git a/core/declarations.gms b/core/declarations.gms index 3f9f81332..200e56187 100644 --- a/core/declarations.gms +++ b/core/declarations.gms @@ -45,10 +45,10 @@ p_developmentState(tall,all_regi) "level of development based f_lab(tall,all_regi,all_POPscen) "labour data for all possible scenarios" pm_lab(tall,all_regi) "data for labour [bn people]" pm_esCapCost(tall,all_regi,all_teEs) "Capital energy cost per unit of consumption for end-use capital (energy service layer)" -*** If elasticities of substitution (sigma) is below 1, the smaller it is the less the substitution replacement effect between different CES nodes. -*** The products become more and more complementary in the production, meaning that the more one product is used, the more the other one is demanded as well. +*** If elasticities of substitution (sigma) is below 1, the smaller it is the less the substitution replacement effect between different CES nodes. +*** The products become more and more complementary in the production, meaning that the more one product is used, the more the other one is demanded as well. *** If sigma is larger than 1, the more one product is used, the less the others are used, i.e. the products are substitutes" -pm_cesdata_sigma(ttot,all_in) "elasticities of substitution." +pm_cesdata_sigma(ttot,all_in) "elasticities of substitution." p_r(ttot,all_regi) "calculating capital interest rate" o_diff_to_Budg(iteration) "Difference between actual CO2 budget and target CO2 budget" @@ -86,9 +86,7 @@ pm_macCostSwitch(all_enty) "switch to include mac cost p_priceCO2(tall,all_regi) "carbon price [$/tC]" pm_priceCO2forMAC(tall,all_regi,all_enty) "carbon price defined for MAC gases [$/tC]" p_priceGas(tall,all_regi) "gas price in [$/tCeq] for ch4gas MAC" -pm_ResidualCementDemand(tall,all_regi) "reduction in cemend demand (and thus process emissions) due to climate policy [0...1]" -pm_CementAbatementPrice(ttot,all_regi) "CO2 price used during calculation of cement demand reduction [$/tCO2]" -pm_CementDemandReductionCost(tall,all_regi) "cost of reducing cement demand [tn$2005]" +pm_CementDemandReductionCost(tall,all_regi) "cost of reducing cement demand [tn$2005]; only used in fixed_shares" p_macPE(ttot,all_regi,all_enty) "pe from MACs" pm_shPerm(tall, all_regi) "emission permit shares" pm_emicapglob(tall) "global emission cap" @@ -426,7 +424,7 @@ vm_changeProdStartyearCost(ttot,all_regi,all_te) "Costs for changing output vm_demFeForEs(ttot,all_regi,all_enty,all_esty,all_teEs) "Final energy which will be used in the ES layer." vm_prodEs(ttot,all_regi,all_enty,all_esty,all_teEs) "Energy services (unit determined by conversion factor pm_fe2es)." -vm_transpGDPscale(ttot,all_regi) "dampening factor to align edge-t non-energy transportation costs with historical GDP data" +vm_transpGDPscale(ttot,all_regi) "dampening factor to align edge-t non-energy transportation costs with historical GDP data" ; ***---------------------------------------------------------------------------------------- diff --git a/core/equations.gms b/core/equations.gms index 9e3ae82dc..ba6d5072b 100644 --- a/core/equations.gms +++ b/core/equations.gms @@ -955,7 +955,7 @@ q_costEnergySys(ttot,regi)$( ttot.val ge cm_startyear ) .. + v_costInv(ttot,regi) ) + sum(emiInd37, vm_IndCCSCost(ttot,regi,emiInd37)) - + pm_CementDemandReductionCost(ttot,regi) + + pm_CementDemandReductionCost(ttot,regi) !! only used in 37_industry/fixed_shares ; diff --git a/core/presolve.gms b/core/presolve.gms index 2360bed79..7d449f74c 100644 --- a/core/presolve.gms +++ b/core/presolve.gms @@ -169,90 +169,6 @@ vm_macBase.fx(ttot,regi,"ch4wsts")$(ttot.val ge 2005) = p_emineg_econometric(reg vm_macBase.fx(ttot,regi,"ch4wstl")$(ttot.val ge 2005) = p_emineg_econometric(regi,"ch4wstl","p1") * pm_pop(ttot,regi) * (1000*pm_gdp(ttot,regi) / (pm_pop(ttot,regi)*pm_shPPPMER(regi)))**p_emineg_econometric(regi,"ch4wstl","p2"); vm_macBase.fx(ttot,regi,"n2owaste")$(ttot.val ge 2005) = p_emineg_econometric(regi,"n2owaste","p1") * pm_pop(ttot,regi) * (1000*pm_gdp(ttot,regi) / (pm_pop(ttot,regi)*pm_shPPPMER(regi)))**p_emineg_econometric(regi,"n2owaste","p2"); -!! vm_macBase.fx(ttot,regi,"co2cement_process")$( ttot.val ge 2005 ) -!! = ( pm_pop(ttot,regi) -!! * ( (1 - p_switch_cement(ttot,regi)) -!! * p_emineg_econometric(regi,"co2cement_process","p1") -!! * ( (1000 -!! * p_inv_gdx(ttot,regi) -!! / ( pm_pop(ttot,regi) -!! * pm_shPPPMER(regi) -!! ) -!! ) ** p_emineg_econometric(regi,"co2cement_process","p2") -!! ) -!! + ( p_switch_cement(ttot,regi) -!! * p_emineg_econometric(regi,"co2cement_process","p3") -!! ) -!! ) -!! )$(p_inv_gdx(ttot,regi) ne 0) -!! ; -!! -!! vm_emiIndBase.fx(ttot,regi,"co2cement_process","cement")$( ttot.val ge 2005 ) -!! = vm_macBase.lo(ttot,regi,"co2cement_process"); - -* *** Reduction of cement demand due to CO2 price markups *** * -if ( NOT (cm_IndCCSscen eq 1 AND cm_CCS_cement eq 1), -*** Cement (clinker) production causes process emissions of the order of -*** 0.5 t CO2/t Cement. As cement prices are of the magnitude of 100 $/t, CO2 -*** pricing leads to significant price markups. - - pm_CementAbatementPrice(ttot,regi)$( ttot.val ge 2005 ) - = pm_priceCO2forMAC(ttot,regi,"co2cement") / sm_c_2_co2; - - display "CO2 price for computing Cement Demand Reduction [$/tC]", - pm_CementAbatementPrice; - - !! The demand reduction function a = 160 / (p + 200) + 0.2 assumes that demand - !! for cement is reduced by 40% if the price doubles (CO2 price of $200) and - !! that demand reductions of 80% can be achieved in the limit. - pm_ResidualCementDemand("2005",regi) = 1; - pm_ResidualCementDemand(ttot,regi)$( ttot.val gt 2005 ) - = 160 / (pm_CementAbatementPrice(ttot,regi) + 200) + 0.2; - - display "Cement Demand Reduction as computed", pm_ResidualCementDemand; - - !! Demand can only be reduced by 1% p.a. - loop (ttot$( ttot.val gt 2005 ), - pm_ResidualCementDemand(ttot,regi) - = max(pm_ResidualCementDemand(ttot,regi), - ( pm_ResidualCementDemand(ttot-1,regi) - - 0.01 * (pm_ttot_val(ttot) - pm_ttot_val(ttot-1)) - ) - ); - ); - - display "Cement Demand Reduction, limited to 1% p.a.", - pm_ResidualCementDemand; - - pm_CementAbatementPrice(ttot,regi)$( ttot.val ge 2005 ) - = 160 / (pm_ResidualCementDemand(ttot,regi) - 0.2) - 200; - - display "Cement Demand Reduction, price of limited reduction", - pm_CementAbatementPrice; - - !! Costs of cement demand reduction are the integral under the activity - !! reduction curve times baseline emissions. - !! a = 160 / (p + 200) + 0.2 - !! A = 160 ln(p + 200) + 0.2p - !! A_MAC(p*) = A(p*) - A(0) - a(p*)p* - pm_CementDemandReductionCost(ttot,regi)$( ttot.val ge 2005 ) - = ( 160 * log(pm_CementAbatementPrice(ttot,regi) + 200) - + 0.2 * pm_CementAbatementPrice(ttot,regi) - - 160 * log(200) - - pm_ResidualCementDemand(ttot,regi) * pm_CementAbatementPrice(ttot,regi) - )$( pm_CementAbatementPrice(ttot,regi) gt 0 ) - / 1000 - * vm_macBase.lo(ttot,regi,"co2cement_process"); - - display "Cement Demand Reduction cost", pm_CementDemandReductionCost; - - vm_macBase.fx(ttot,regi,"co2cement_process")$( ttot.val ge 2005 ) - = vm_macBase.lo(ttot,regi,"co2cement_process") - * pm_ResidualCementDemand(ttot,regi); - - vm_emiIndBase.fx(ttot,regi,"co2cement_process","cement")$( ttot.val ge 2005 ) - = vm_macBase.lo(ttot,regi,"co2cement_process"); -); *** exogenous @@ -270,6 +186,10 @@ vm_macBase.fx(ttot,regi,enty)$((ttot.val gt 2100)$((NOT emiMacMagpie(enty)) AND *DK: baseline continuation not necessary for magpie-emissions as the exogenous data reaches until 2150 * JeS: exclude endgenous baseline calculation, i.e. emiFuEx and n2ofertin +!! industry uses vm_emiIndBase instead (both for ccs cost and for emission accounting) +!! (exception: in the fixed_shares realization, for co2cement_process; here, vm_macBase.fx is overwritten in presolve) +vm_macBase.fx(ttot,regi,emiInd37) = 0; + ***-------------------------------------- *** MAC abatement diff --git a/modules/37_industry/fixed_shares/declarations.gms b/modules/37_industry/fixed_shares/declarations.gms index 213298113..d78371c59 100644 --- a/modules/37_industry/fixed_shares/declarations.gms +++ b/modules/37_industry/fixed_shares/declarations.gms @@ -16,6 +16,8 @@ scalars Parameters pm_abatparam_Ind(ttot,all_regi,all_enty,steps) "industry CCS MAC curves [ratio @ US$2005]" + p37_ResidualCementDemand(tall,all_regi) "reduction in cemend demand (and thus process emissions) due to climate policy [0...1]" + p37_CementAbatementPrice(ttot,all_regi) "CO2 price used during calculation of cement demand reduction [$/tCO2]" pm_ue_eff_target(all_in) "energy efficiency target trajectories [% p.a.]" / / diff --git a/modules/37_industry/fixed_shares/equations.gms b/modules/37_industry/fixed_shares/equations.gms index 39ca17845..743f932d9 100644 --- a/modules/37_industry/fixed_shares/equations.gms +++ b/modules/37_industry/fixed_shares/equations.gms @@ -11,23 +11,23 @@ ***--------------------------------------------------------------------------- *' Industry Final Energy Balance ***--------------------------------------------------------------------------- -q37_demFeIndst(ttot,regi,entyFe,emiMkt)$((ttot.val ge cm_startyear) AND (entyFe2Sector(entyFe,"indst"))) .. - sum((entySe,te)$(se2fe(entySe,entyFe,te)), +q37_demFeIndst(ttot,regi,entyFe,emiMkt)$((ttot.val ge cm_startyear) AND (entyFe2Sector(entyFe,"indst"))) .. + sum((entySe,te)$(se2fe(entySe,entyFe,te)), vm_demFeSector_afterTax(ttot,regi,entySe,entyFe,"indst",emiMkt) - ) + ) =e= sum(in$(fe2ppfEn(entyFe,in) and ppfen_industry_dyn37(in)), ( vm_cesIO(ttot,regi,in) + pm_cesdata(ttot,regi,in,"offset_quantity") ) * sum(secInd37$secInd37_emiMkt(secInd37,emiMkt), p37_shIndFE(regi,in,secInd37)) - ) + ) ; -*' Baseline (emitted and captured) emissions by final energy carrier and -*' industry subsector are calculated from final energy use in industry, the -*' subsectors' shares in that final energy carriers use, and the emission -*' factor the final energy carrier. -q37_emiIndBase(ttot,regi,entyFe,secInd37)$( ttot.val ge cm_startyear ) .. +*' Baseline (emitted and captured) emissions by final energy carrier and +*' industry subsector are calculated from final energy use in industry, the +*' subsectors' shares in that final energy carriers use, and the emission +*' factor the final energy carrier. +q37_emiIndBase(ttot,regi,entyFe,secInd37)$( ttot.val ge cm_startyear ) .. vm_emiIndBase(ttot,regi,entyFe,secInd37) =e= sum((fe2ppfEn(entyFe,in),ces_industry_dyn37("enhi",in))$(entyFeCC37(entyFe)), @@ -38,9 +38,9 @@ q37_emiIndBase(ttot,regi,entyFe,secInd37)$( ttot.val ge cm_startyear ) .. ; *' The maximum abatable emissions of a given type (industry subsector, fuel or -*' process) are calculated from the baseline emissions and the possible -*' abatement level (depending on the carbon price of the previous iteration). -q37_emiIndCCSmax(ttot,regi,emiInd37)$( ttot.val ge cm_startyear ) .. +*' process) are calculated from the baseline emissions and the possible +*' abatement level (depending on the carbon price of the previous iteration). +q37_emiIndCCSmax(ttot,regi,emiInd37)$( ttot.val ge cm_startyear ) .. v37_emiIndCCSmax(ttot,regi,emiInd37) =e= sum(emiMac2mac(emiInd37,macInd37), @@ -56,18 +56,18 @@ q37_emiIndCCSmax(ttot,regi,emiInd37)$( ttot.val ge cm_startyear ) .. ) ; -*' Industry CCS is limited to below the maximum abatable emissions. -q37_IndCCS(ttot,regi,emiInd37)$( ttot.val ge cm_startyear ) .. +*' Industry CCS is limited to below the maximum abatable emissions. +q37_IndCCS(ttot,regi,emiInd37)$( ttot.val ge cm_startyear ) .. vm_emiIndCCS(ttot,regi,emiInd37) =l= v37_emiIndCCSmax(ttot,regi,emiInd37) ; -*' The CCS capture rates of cement fuel and process emissions are identical, -*' as they are captured in the same installation. +*' The CCS capture rates of cement fuel and process emissions are identical, +*' as they are captured in the same installation. q37_cementCCS(ttot,regi)$( ttot.val ge cm_startyear AND pm_macSwitch("co2cement") - AND pm_macAbatLev(ttot,regi,"co2cement") ) .. + AND pm_macAbatLev(ttot,regi,"co2cement") ) .. vm_emiIndCCS(ttot,regi,"co2cement") * v37_emiIndCCSmax(ttot,regi,"co2cement_process") =e= @@ -75,33 +75,33 @@ q37_cementCCS(ttot,regi)$( ttot.val ge cm_startyear * v37_emiIndCCSmax(ttot,regi,"co2cement") ; -*' Industry CCS costs (by subsector) are equal to the integral below the MAC +*' Industry CCS costs (by subsector) are equal to the integral below the MAC *' cost curve. *' For the calculation, consider this figure: *' ![MAC curve example](MAC_costs.png) -*' To make the calculations involving MAC curves leaner, they are discretised -*' into 5 $/tC steps (parameter `sm_dmac`) and transformed into step-wise +*' To make the calculations involving MAC curves leaner, they are discretised +*' into 5 $/tC steps (parameter `sm_dmac`) and transformed into step-wise *' curves. The parameter `pm_macStep` holds the current step on the MAC curve -*' the model is on (given the CO~2~ price of the last iteration), and -*' `pm_macAbat` holds the abatement level (as a fraction) on that step. The -*' emission abatement equals the area under the MAC curve (turqoise area in the -*' figure). To calculate it, `pm_macStep` is multiplied by `pm_macAbat` (the -*' horizontal and vertical lines enclosing the coloured rectangle in the -*' figure). The `sum(steps$( ord(steps) eq pm_macStep ... )` part simply +*' the model is on (given the CO~2~ price of the last iteration), and +*' `pm_macAbat` holds the abatement level (as a fraction) on that step. The +*' emission abatement equals the area under the MAC curve (turqoise area in the +*' figure). To calculate it, `pm_macStep` is multiplied by `pm_macAbat` (the +*' horizontal and vertical lines enclosing the coloured rectangle in the +*' figure). The `sum(steps$( ord(steps) eq pm_macStep ... )` part simply *' selects the right step within the MAC curve. From this product (rectangle), -*' the area above the MAC curve (pink) is subtractad. To calculate it, the -*' abatement level at each MAC step up to and including the current step is -*' summed up. The area is subdivided into `pm_macStep` rectangles of height -*' `1 sm_dmac` and width `pm_macAbat(steps)` (which is zero for the first $n$ -*' steps at which price level no abatement is available). -*' Multiplying the area under the curve with the step width `sm_dmac` and the +*' the area above the MAC curve (pink) is subtractad. To calculate it, the +*' abatement level at each MAC step up to and including the current step is +*' summed up. The area is subdivided into `pm_macStep` rectangles of height +*' `1 sm_dmac` and width `pm_macAbat(steps)` (which is zero for the first $n$ +*' steps at which price level no abatement is available). +*' Multiplying the area under the curve with the step width `sm_dmac` and the *' baseline emissions (before mitigation) converts the units to $/tC and GtC. *' -*' Example: The carbon price is 43.6 $/tCO~2~, which translates to step 32 on -*' the discrete MAC curve (43.6 $/tCO~2~ * (44/12 tCO~2~/tC) / (5 $/step)). +*' Example: The carbon price is 43.6 $/tCO~2~, which translates to step 32 on +*' the discrete MAC curve (43.6 $/tCO~2~ * (44/12 tCO~2~/tC) / (5 $/step)). *' The calculation then is: *' ``` -*' vm_emiIndCCS = +*' vm_emiIndCCS = *' 0.001 *' * vm_emiIndBase *' * sm_dmac @@ -113,7 +113,7 @@ q37_cementCCS(ttot,regi)$( ttot.val ge cm_startyear *' ) *' -q37_IndCCSCost(ttot,regi,emiInd37)$( ttot.val ge cm_startyear ) .. +q37_IndCCSCost(ttot,regi,emiInd37)$( ttot.val ge cm_startyear ) .. vm_IndCCSCost(ttot,regi,emiInd37) =e= 1e-3 @@ -149,13 +149,13 @@ q37_costAddTeInv(t,regi,te)$(sameAs(te,"tdh2s")).. ***--------------------------------------------------------------------------- -*' Additional hydrogen phase-in cost at low H2 penetration levels +*' Additional hydrogen phase-in cost at low H2 penetration levels ***--------------------------------------------------------------------------- q37_costAddH2PhaseIn(t,regi).. v37_costAddTeInvH2(t,regi,"tdh2s") =e= - (1 / (1 + (3 ** v37_costExponent(t,regi)))) - * ( s37_costAddH2Inv + (1 / (1 + (3 ** v37_costExponent(t,regi)))) + * ( s37_costAddH2Inv * sm_TWa_2_kWh / sm_trillion_2_non * sum(emiMkt, vm_demFeSector_afterTax(t,regi,"seh2","feh2s","indst",emiMkt)) ) @@ -172,14 +172,14 @@ q37_auxCostAddTeInv(t,regi).. *' Hydrogen fe share in industry gases use (natural gas + hydrogen) q37_H2Share(t,regi).. - v37_H2share(t,regi) - * sum(emiMkt, - sum(se2fe(entySe,entyFe,te)$(SAMEAS(entyFe,"feh2s") OR SAMEAS(entyFe,"fegas")), + v37_H2share(t,regi) + * sum(emiMkt, + sum(se2fe(entySe,entyFe,te)$(SAMEAS(entyFe,"feh2s") OR SAMEAS(entyFe,"fegas")), vm_demFeSector_afterTax(t,regi,entySe,entyFe,"indst",emiMkt))) =e= - sum(emiMkt, - sum(se2fe(entySe,entyFe,te)$SAMEAS(entyFe,"feh2s"), - vm_demFeSector_afterTax(t,regi,entySe,entyFe,"indst",emiMkt))) + sum(emiMkt, + sum(se2fe(entySe,entyFe,te)$SAMEAS(entyFe,"feh2s"), + vm_demFeSector_afterTax(t,regi,entySe,entyFe,"indst",emiMkt))) ; ***--------------------------------------------------------------------------- diff --git a/modules/37_industry/fixed_shares/presolve.gms b/modules/37_industry/fixed_shares/presolve.gms index efc399662..0b9a6239e 100644 --- a/modules/37_industry/fixed_shares/presolve.gms +++ b/modules/37_industry/fixed_shares/presolve.gms @@ -6,14 +6,32 @@ *** | Contact: remind@pik-potsdam.de *** SOF ./modules/37_industry/fixed_shares/presolve.gms -*** zero out a ghost -vm_macBase.fx(ttot,regi,emiInd37_fuel) = 0; +vm_macBase.fx(ttot,regi,"co2cement_process")$( ttot.val ge 2005 ) + = ( pm_pop(ttot,regi) + * ( (1 - p_switch_cement(ttot,regi)) + * p_emineg_econometric(regi,"co2cement_process","p1") + * ( (1000 + * p_inv_gdx(ttot,regi) + / ( pm_pop(ttot,regi) + * pm_shPPPMER(regi) + ) + ) ** p_emineg_econometric(regi,"co2cement_process","p2") + ) + + ( p_switch_cement(ttot,regi) + * p_emineg_econometric(regi,"co2cement_process","p3") + ) + ) + )$(p_inv_gdx(ttot,regi) ne 0) +; + +vm_emiIndBase.fx(ttot,regi,"co2cement_process","cement")$( ttot.val ge 2005 ) += vm_macBase.lo(ttot,regi,"co2cement_process"); *** adjust CO2 cement process emissions if (cm_IndCCSscen eq 1 AND cm_CCS_cement eq 1, !! lowest price for which abatement equals current abatement - pm_CementAbatementPrice(ttot,regi)$( ttot.val ge 2005 ) + p37_CementAbatementPrice(ttot,regi)$( ttot.val ge 2005 ) = max(0, smin(steps$( pm_abatparam_Ind(ttot,regi,"co2cement",steps) ge pm_macAbatLev(ttot,regi,"co2cement") ), @@ -23,51 +41,51 @@ if (cm_IndCCSscen eq 1 AND cm_CCS_cement eq 1, * sm_dmac; display "Marginal cost of Cement Demand Reduction [$/tC]", - pm_CementAbatementPrice; + p37_CementAbatementPrice; !! mix prices of residual and abated emissions - pm_CementAbatementPrice(ttot,regi)$( ttot.val ge 2005 ) + p37_CementAbatementPrice(ttot,regi)$( ttot.val ge 2005 ) = ( (1 - pm_macAbatLev(ttot,regi,"co2cement")) * pm_priceCO2forMAC(ttot,regi,"co2cement") + ( pm_macAbatLev(ttot,regi,"co2cement") - * pm_CementAbatementPrice(ttot,regi) + * p37_CementAbatementPrice(ttot,regi) ) ) / sm_c_2_co2; display "Mixed price of CO2 for Cement Demand Reduction [$/tCO2]", - pm_CementAbatementPrice; + p37_CementAbatementPrice; + + p37_ResidualCementDemand("2005",regi) = 1; + p37_ResidualCementDemand(ttot,regi)$( ttot.val gt 2005 ) + = 160 / (p37_CementAbatementPrice(ttot,regi) + 200) + 0.2; - pm_ResidualCementDemand("2005",regi) = 1; - pm_ResidualCementDemand(ttot,regi)$( ttot.val gt 2005 ) - = 160 / (pm_CementAbatementPrice(ttot,regi) + 200) + 0.2; + display "Cement Demand Reduction as computed", p37_ResidualCementDemand; - display "Cement Demand Reduction as computed", pm_ResidualCementDemand; - !! Demand can only be reduced by 1% p.a. loop (ttot$( ttot.val gt 2005 ), - pm_ResidualCementDemand(ttot,regi) - = max(pm_ResidualCementDemand(ttot,regi), - ( pm_ResidualCementDemand(ttot-1,regi) + p37_ResidualCementDemand(ttot,regi) + = max(p37_ResidualCementDemand(ttot,regi), + ( p37_ResidualCementDemand(ttot-1,regi) - 0.01 * (pm_ttot_val(ttot) - pm_ttot_val(ttot-1)) ) ); ); display "Cement Demand Reduction, limited to 1% p.a.", - pm_ResidualCementDemand; + p37_ResidualCementDemand; - pm_CementAbatementPrice(ttot,regi)$( ttot.val ge 2005 ) - = 160 / (pm_ResidualCementDemand(ttot,regi) - 0.2) - 200; + p37_CementAbatementPrice(ttot,regi)$( ttot.val ge 2005 ) + = 160 / (p37_ResidualCementDemand(ttot,regi) - 0.2) - 200; display "Cement Demand Reduction, price of limited reduction", - pm_CementAbatementPrice; + p37_CementAbatementPrice; pm_CementDemandReductionCost(ttot,regi)$( ttot.val ge 2005 ) - = ( 160 * log(pm_CementAbatementPrice(ttot,regi) + 200) - + 0.2 * pm_CementAbatementPrice(ttot,regi) + = ( 160 * log(p37_CementAbatementPrice(ttot,regi) + 200) + + 0.2 * p37_CementAbatementPrice(ttot,regi) - 160 * log(200) - - pm_ResidualCementDemand(ttot,regi) * pm_CementAbatementPrice(ttot,regi) - )$( pm_CementAbatementPrice(ttot,regi) gt 0 ) + - p37_ResidualCementDemand(ttot,regi) * p37_CementAbatementPrice(ttot,regi) + )$( p37_CementAbatementPrice(ttot,regi) gt 0 ) / 1000 * vm_macBase.lo(ttot,regi,"co2cement_process"); @@ -75,12 +93,75 @@ if (cm_IndCCSscen eq 1 AND cm_CCS_cement eq 1, vm_macBase.fx(ttot,regi,"co2cement_process")$( ttot.val ge 2005 ) = vm_macBase.lo(ttot,regi,"co2cement_process") - * pm_ResidualCementDemand(ttot,regi); + * p37_ResidualCementDemand(ttot,regi); vm_emiIndBase.fx(ttot,regi,"co2cement_process","cement")$( ttot.val ge 2005 ) = vm_macBase.lo(ttot,regi,"co2cement_process"); -); +else + +*** Cement (clinker) production causes process emissions of the order of +*** 0.5 t CO2/t Cement. As cement prices are of the magnitude of 100 $/t, CO2 +*** pricing leads to significant price markups. + + p37_CementAbatementPrice(ttot,regi)$( ttot.val ge 2005 ) + = pm_priceCO2forMAC(ttot,regi,"co2cement") / sm_c_2_co2; + + display "CO2 price for computing Cement Demand Reduction [$/tC]", + p37_CementAbatementPrice; + + !! The demand reduction function a = 160 / (p + 200) + 0.2 assumes that demand + !! for cement is reduced by 40% if the price doubles (CO2 price of $200) and + !! that demand reductions of 80% can be achieved in the limit. + p37_ResidualCementDemand("2005",regi) = 1; + p37_ResidualCementDemand(ttot,regi)$( ttot.val gt 2005 ) + = 160 / (p37_CementAbatementPrice(ttot,regi) + 200) + 0.2; + + display "Cement Demand Reduction as computed", p37_ResidualCementDemand; + + !! Demand can only be reduced by 1% p.a. + loop (ttot$( ttot.val gt 2005 ), + p37_ResidualCementDemand(ttot,regi) + = max(p37_ResidualCementDemand(ttot,regi), + ( p37_ResidualCementDemand(ttot-1,regi) + - 0.01 * (pm_ttot_val(ttot) - pm_ttot_val(ttot-1)) + ) + ); + ); + + display "Cement Demand Reduction, limited to 1% p.a.", + p37_ResidualCementDemand; + + p37_CementAbatementPrice(ttot,regi)$( ttot.val ge 2005 ) + = 160 / (p37_ResidualCementDemand(ttot,regi) - 0.2) - 200; + + display "Cement Demand Reduction, price of limited reduction", + p37_CementAbatementPrice; + + !! Costs of cement demand reduction are the integral under the activity + !! reduction curve times baseline emissions. + !! a = 160 / (p + 200) + 0.2 + !! A = 160 ln(p + 200) + 0.2p + !! A_MAC(p*) = A(p*) - A(0) - a(p*)p* + pm_CementDemandReductionCost(ttot,regi)$( ttot.val ge 2005 ) + = ( 160 * log(p37_CementAbatementPrice(ttot,regi) + 200) + + 0.2 * p37_CementAbatementPrice(ttot,regi) + - 160 * log(200) + - p37_ResidualCementDemand(ttot,regi) * p37_CementAbatementPrice(ttot,regi) + )$( p37_CementAbatementPrice(ttot,regi) gt 0 ) + / 1000 + * vm_macBase.lo(ttot,regi,"co2cement_process"); + + display "Cement Demand Reduction cost", pm_CementDemandReductionCost; + + vm_macBase.fx(ttot,regi,"co2cement_process")$( ttot.val ge 2005 ) + = vm_macBase.lo(ttot,regi,"co2cement_process") + * p37_ResidualCementDemand(ttot,regi); + + vm_emiIndBase.fx(ttot,regi,"co2cement_process","cement")$( ttot.val ge 2005 ) + = vm_macBase.lo(ttot,regi,"co2cement_process"); +); + *** EOF ./modules/37_industry/fixed_shares/presolve.gms diff --git a/modules/37_industry/subsectors/bounds.gms b/modules/37_industry/subsectors/bounds.gms index 739f5ec6a..bf35a8210 100755 --- a/modules/37_industry/subsectors/bounds.gms +++ b/modules/37_industry/subsectors/bounds.gms @@ -133,7 +133,6 @@ $ifthen.policy_scenario "%cm_indstExogScen_set%" == "YES" $endif.policy_scenario $drop cm_indstExogScen_set - $ifthen.cm_subsec_model_steel "%cm_subsec_model_steel%" == "processes" !! fix processes procudction in historic years if (cm_startyear eq 2005, diff --git a/modules/37_industry/subsectors/datainput.gms b/modules/37_industry/subsectors/datainput.gms index fed832bfd..7fce62e16 100644 --- a/modules/37_industry/subsectors/datainput.gms +++ b/modules/37_industry/subsectors/datainput.gms @@ -144,7 +144,7 @@ loop (industry_ue_calibration_target_dyn37(out), ); ); - loop (regi_group(ext_regi,regi)$( + loop (regi_group(ext_regi,regi)$( smax(ttot, p37_energy_limit_def(ttot,ext_regi,out)) ne 0 ), !! maximum "efficiency gain", from 2015 baseline value to theoretical limit sm_tmp2 = smax(ttot, p37_energy_limit_def(ttot,ext_regi,out)); @@ -182,6 +182,8 @@ $endif.no_calibration *** CCS for industry is off by default emiMacSector(emiInd37_fuel) = NO; pm_macSwitch(emiInd37) = NO; +*** CCS cost is accounted for via vm_IndCCSCost +pm_macCostSwitch(emiInd37) =0 ; *** turn on CCS for industry emissions if (cm_IndCCSscen eq 1, @@ -213,6 +215,7 @@ emiMacSector("co2otherInd") = NO; pm_macSwitch("co2otherInd") = NO; emiMac2mac("co2otherInd","co2otherInd") = NO; + *** data on maximum secondary steel production *** The steel recycling rate limit is assumed to increase from 90 to 99 %. p37_cesIO_up_steel_secondary(tall,all_regi,all_GDPscen) @@ -241,7 +244,8 @@ p37_clinker_cement_ratio(t,regi) * (min(t.val, 2100) - 2005) / (2100 - 2005); -*** Cement demand reduction is implicit in the production function, so no extra +*** pm_CementDemandReductionCost is only used in fixed_shares. +*** In subsecttors, cement demand reduction is implicit in the production function, so no extra *** costs have to be calculated. pm_CementDemandReductionCost(ttot,regi) = 0; diff --git a/modules/37_industry/subsectors/not_used.txt b/modules/37_industry/subsectors/not_used.txt index 0db6e05b1..74813248d 100644 --- a/modules/37_industry/subsectors/not_used.txt +++ b/modules/37_industry/subsectors/not_used.txt @@ -8,8 +8,8 @@ name,type,reason vm_effGr,input,questionnaire pm_ppfen_shares,input,questionnaire pm_priceCO2forMAC,input,questionnaire -pm_ResidualCementDemand,input,questionnaire -pm_CementAbatementPrice,input,questionnaire +p37_ResidualCementDemand,input,questionnaire +p37_CementAbatementPrice,input,questionnaire pm_ttot_val,input,questionnaire cm_optimisticMAC,input,questionnaire pm_macCostSwitch,input,questionnaire diff --git a/modules/37_industry/subsectors/presolve.gms b/modules/37_industry/subsectors/presolve.gms index 556ebb4f1..55ec013fc 100644 --- a/modules/37_industry/subsectors/presolve.gms +++ b/modules/37_industry/subsectors/presolve.gms @@ -8,6 +8,5 @@ -***p37_emiFac(ttot,regi,entyFe) = sum((entySe,te)$(se2fe(entySe,entyFe,te) and entySeFos(entySe)), pm_emifac(ttot,regi,entySe,entyFe,te,"co2")); *** EOF ./modules/37_industry/subsectors/presolve.gms From e88306296235a656ecb6dcd18db440ab74c6ef4e Mon Sep 17 00:00:00 2001 From: Jakob Duerrwaechter Date: Thu, 16 May 2024 17:27:06 +0200 Subject: [PATCH 6/9] fix codeCheck issues --- core/datainput.gms | 13 +- core/declarations.gms | 4 +- core/postsolve.gms | 308 +++++++++--------- core/presolve.gms | 62 ++-- modules/37_industry/fixed_shares/presolve.gms | 14 +- modules/37_industry/subsectors/equations.gms | 2 +- modules/37_industry/subsectors/not_used.txt | 6 +- 7 files changed, 207 insertions(+), 202 deletions(-) diff --git a/core/datainput.gms b/core/datainput.gms index c95722a28..6cdefefca 100644 --- a/core/datainput.gms +++ b/core/datainput.gms @@ -110,7 +110,7 @@ p_developmentState(tall,all_regi) = f_developmentState(tall,all_regi,"%c_GDPpcSc Execute_Loadpoint 'input' vm_cesIO, vm_invMacro; pm_gdp_gdx(ttot,regi) = vm_cesIO.l(ttot,regi,"inco"); -p_inv_gdx(ttot,regi) = vm_invMacro.l(ttot,regi,"kap"); +pm_inv_gdx(ttot,regi) = vm_invMacro.l(ttot,regi,"kap"); *------------------------------------------------------------------------------------ @@ -1361,14 +1361,15 @@ pm_macCostSwitch(enty)=pm_macSwitch(enty); *** load econometric emission data *** read in p3 and p4 -table p_emineg_econometric(all_regi,all_enty,p) "parameters for ch4 and n2o emissions from waste baseline and co2 emissions from cement production" +*** the co2cement_process part is only used in subsectors +table pm_emineg_econometric(all_regi,all_enty,p) "parameters for ch4 and n2o emissions from waste baseline and co2 emissions from cement production" $ondelim -$include "./core/input/p_emineg_econometric.cs3r" +$include "./core/input/pm_emineg_econometric.cs3r" $offdelim ; -p_emineg_econometric(regi,"co2cement_process","p4")$(p_emineg_econometric(regi,"co2cement_process","p4") eq 0) = sm_eps; -p_emineg_econometric(regi,enty,"p1") = 0; -p_emineg_econometric(regi,enty,"p2") = 0; +pm_emineg_econometric(regi,"co2cement_process","p4")$(pm_emineg_econometric(regi,"co2cement_process","p4") eq 0) = sm_eps; +pm_emineg_econometric(regi,enty,"p1") = 0; +pm_emineg_econometric(regi,enty,"p2") = 0; *** p2 is calculated in presolve parameter p_macBase2005(all_regi,all_enty) "baseline emissions of mac options in 2005" diff --git a/core/declarations.gms b/core/declarations.gms index 200e56187..da619ced6 100644 --- a/core/declarations.gms +++ b/core/declarations.gms @@ -25,7 +25,7 @@ p_pvpRegiBeforeStartYear(ttot,all_regi,all_enty) "prices of traded commoditi p_share(ttot,all_regi,all_in,all_in) "share of production factors" pm_share_trans(tall,all_regi) "transportation share" pm_gdp_gdx(tall,all_regi) "GDP path from gdx, updated iteratively." -p_inv_gdx(tall,all_regi) "macro-investments path from gdx, updated iteratively." +pm_inv_gdx(tall,all_regi) "macro-investments path from gdx, updated iteratively." pm_taxCO2eq(ttot,all_regi) "CO2 tax path in T$/GtC = $/kgC. To get $/tCO2, multiply with 272 [T$/GtC]" pm_taxCO2eqRegi(tall,all_regi) "additional regional CO2 tax path in T$/GtC = $/kgC. To get $/tCO2, multiply with 272 [T$/GtC]" pm_taxCO2eqSum(tall,all_regi) "sum of pm_taxCO2eq, pm_taxCO2eqRegi, pm_taxCO2eqSCC in T$/GtC = $/kgC. To get $/tCO2, multiply with 272 [T$/GtC]" @@ -92,7 +92,7 @@ pm_shPerm(tall, all_regi) "emission permit shares" pm_emicapglob(tall) "global emission cap" p_adj_coeff(ttot,all_regi,all_te) "coefficient for adjustment costs" p_adj_coeff_glob(all_te) "coefficient for adjustment costs - global scale" -p_switch_cement(ttot,all_regi) "describes an s-curve to provide a smooth switching from the short-term behavior (depending on per capita capital investments) to the long-term behavior (constant per capita emissions) of CO2 emissions from cement production" +pm_switch_cement(ttot,all_regi) "describes an s-curve to provide a smooth switching from the short-term behavior (depending on per capita capital investments) to the long-term behavior (constant per capita emissions) of CO2 emissions from cement production" p_cint(all_regi,all_enty,all_enty,rlf) "additional emissions of GHG from mining, on top of emissions from combustion" $IFTHEN.agricult_base_shift not "%c_agricult_base_shift%" == "off" diff --git a/core/postsolve.gms b/core/postsolve.gms index bef3e3399..e5f82349c 100644 --- a/core/postsolve.gms +++ b/core/postsolve.gms @@ -12,14 +12,14 @@ p_taxCO2eq_iteration(iteration,ttot,regi) = pm_taxCO2eq(ttot,regi); pm_taxemiMkt_iteration(iteration,ttot,regi,emiMkt) = pm_taxemiMkt(ttot,regi,emiMkt); -if( (cm_emiscen eq 6), -$ifthen.neg %optimization% == 'negishi' +if( (cm_emiscen eq 6), +$ifthen.neg %optimization% == 'negishi' pm_taxCO2eqSum(ttot,regi) = abs((abs(q_co2eq.m(ttot,regi)) / pm_ts(ttot)) / (pm_pvp(ttot,"good") + sm_eps)); $else.neg pm_taxCO2eqSum(ttot,regi) = abs( abs(q_co2eq.m(ttot,regi)) / (abs(qm_budget.m(ttot,regi))+ sm_eps) ); -$endif.neg +$endif.neg elseif (cm_emiscen eq 1), !! even in a BAU scenario without other climate policies, the 2010/2015/2020 CO2 prices should be reported (that still needs to be fixed, I guess, maybe by adding the historic prices to the 45/carbonprice/off variation - pm_taxCO2eqSum(ttot,regi)$(ttot.val < 2025) = pm_taxCO2eq(ttot,regi); + pm_taxCO2eqSum(ttot,regi)$(ttot.val < 2025) = pm_taxCO2eq(ttot,regi); ); if(cm_iterative_target_adj eq 4, @@ -31,10 +31,10 @@ s_actualbudgetco2 = sum(ttot$(ttot.val le 2090 AND ttot.val > 2020), ( + sum(regi, vm_emiTe.l("2100",regi,"co2") + vm_emiMacSector.l("2100",regi,"co2cement_process")) * sm_c_2_co2 * (10 - pm_ts("2090")/2 + 0.5) + sum(regi, vm_emiTe.l("2020",regi,"co2") + vm_emiMacSector.l("2020",regi,"co2cement_process")) * sm_c_2_co2 * (pm_ts("2020")/2 + 0.5); display s_actualbudgetco2; - + if (cm_emiscen eq 6, if(o_modelstat eq 2 AND ord(iteration) 2020), ( + sum(regi, vm_emiTe.l("2020",regi,"co2") + vm_emiCdr.l("2020",regi,"co2") + vm_emiMac.l("2020",regi,"co2")) * sm_c_2_co2 * (pm_ts("2020")/2 + 0.5); display s_actualbudgetco2; - + if (cm_emiscen eq 6, if(o_modelstat eq 2 AND ord(iteration) 0 AND abs(c_budgetCO2from2020 - s_actualbudgetco2) ge 0.5, !!only for optimal iterations, and not after the last one, and only if budget still possitive, and only if target not yet reached - sm_globalBudget_dev = s_actualbudgetco2 / c_budgetCO2from2020; -*** make sure that iteration converges: -*** use multiplicative for budgets higher than 1200 Gt; for lower budgets, use multiplicative adjustment only for first 3 iterations, + sm_globalBudget_dev = s_actualbudgetco2 / c_budgetCO2from2020; +*** make sure that iteration converges: +*** use multiplicative for budgets higher than 1200 Gt; for lower budgets, use multiplicative adjustment only for first 3 iterations, if(ord(iteration) lt 3 or c_budgetCO2from2020 > 1200, !! change in CO2 price through adjustment: new price - old price; needed for adjustment option 2 pm_taxCO2eq_iterationdiff(t,regi) = pm_taxCO2eq(t,regi) * min(max((s_actualbudgetco2/c_budgetCO2from2020)** (25/(2 * iteration.val + 23)),0.5+iteration.val/208),2 - iteration.val/102) - pm_taxCO2eq(t,regi); pm_taxCO2eq(t,regi) = pm_taxCO2eq(t,regi) + pm_taxCO2eq_iterationdiff(t,regi) ; -*** then switch to triangle-approximation based on last two iteration data points +*** then switch to triangle-approximation based on last two iteration data points else !! change in CO2 price through adjustment: new price - old price; the two instances of "pm_taxCO2eq" cancel out -> only the difference term - pm_taxCO2eq_iterationdiff_tmp(t,regi) = + pm_taxCO2eq_iterationdiff_tmp(t,regi) = max(pm_taxCO2eq_iterationdiff(t,regi) * min(max((c_budgetCO2from2020 - s_actualbudgetco2)/(s_actualbudgetco2 - s_actualbudgetco2_last),-2),2),-pm_taxCO2eq(t,regi)/2); - pm_taxCO2eq(t,regi) = pm_taxCO2eq(t,regi) + + pm_taxCO2eq(t,regi) = pm_taxCO2eq(t,regi) + max(pm_taxCO2eq_iterationdiff(t,regi) * min(max((c_budgetCO2from2020 - s_actualbudgetco2)/(s_actualbudgetco2 - s_actualbudgetco2_last),-2),2),-pm_taxCO2eq(t,regi)/2); pm_taxCO2eq_iterationdiff(t,regi) = pm_taxCO2eq_iterationdiff_tmp(t,regi); ); @@ -102,10 +102,10 @@ display s_actualbudgetco2; pm_taxCO2eq_iterationdiff(t,regi) = -0.2*pm_taxCO2eq(t,regi); pm_taxCO2eq(t,regi) = pm_taxCO2eq(t,regi) + pm_taxCO2eq_iterationdiff(t,regi); o_taxCO2eq_iterDiff_Itr(iteration,regi) = pm_taxCO2eq_iterationdiff("2030",regi); - ); + ); ); display o_taxCO2eq_iterDiff_Itr; - + pm_taxCO2eq(t,regi)$(t.val gt 2110) = pm_taxCO2eq("2110",regi); !! to prevent huge taxes after 2110 and the resulting convergence problems, set taxes after 2110 equal to 2110 value display pm_taxCO2eq; ); @@ -123,10 +123,10 @@ p_actualbudgetco2(ttot)$(ttot.val > 2020) = sum(ttot2$(ttot2.val < ttot.val AND s_actualbudgetco2 = smax(t,p_actualbudgetco2(t)); display s_actualbudgetco2; - + if (cm_emiscen eq 6, if(o_modelstat eq 2 AND ord(iteration) 0 AND abs(c_budgetCO2from2020 - s_actualbudgetco2) ge 0.5, !!only for optimal iterations, and not after the last one, and only if budget still possitive, and only if target not yet reached -*** make sure that iteration converges: -*** use multiplicative for budgets higher than 1200 Gt; for lower budgets, use multiplicative adjustment only for first 3 iterations, +*** make sure that iteration converges: +*** use multiplicative for budgets higher than 1200 Gt; for lower budgets, use multiplicative adjustment only for first 3 iterations, if(ord(iteration) lt 3 or c_budgetCO2from2020 > 1200, !! change in CO2 price through adjustment: new price - old price; needed for adjustment option 2 pm_taxCO2eq_iterationdiff(t,regi) = pm_taxCO2eq(t,regi) * min(max((s_actualbudgetco2/c_budgetCO2from2020)** (25/(2 * iteration.val + 23)),0.5+iteration.val/208),2 - iteration.val/102) - pm_taxCO2eq(t,regi); pm_taxCO2eq(t,regi) = pm_taxCO2eq(t,regi) + pm_taxCO2eq_iterationdiff(t,regi) ; -*** then switch to triangle-approximation based on last two iteration data points +*** then switch to triangle-approximation based on last two iteration data points else !! change in CO2 price through adjustment: new price - old price; the two instances of "pm_taxCO2eq" cancel out -> only the difference term - pm_taxCO2eq_iterationdiff_tmp(t,regi) = + pm_taxCO2eq_iterationdiff_tmp(t,regi) = max(pm_taxCO2eq_iterationdiff(t,regi) * min(max((c_budgetCO2from2020 - s_actualbudgetco2)/(s_actualbudgetco2 - s_actualbudgetco2_last),-2),2),-pm_taxCO2eq(t,regi)/2); - pm_taxCO2eq(t,regi) = pm_taxCO2eq(t,regi) + + pm_taxCO2eq(t,regi) = pm_taxCO2eq(t,regi) + max(pm_taxCO2eq_iterationdiff(t,regi) * min(max((c_budgetCO2from2020 - s_actualbudgetco2)/(s_actualbudgetco2 - s_actualbudgetco2_last),-2),2),-pm_taxCO2eq(t,regi)/2); pm_taxCO2eq_iterationdiff(t,regi) = pm_taxCO2eq_iterationdiff_tmp(t,regi); ); @@ -161,10 +161,10 @@ display s_actualbudgetco2; pm_taxCO2eq_iterationdiff(t,regi) = -0.2*pm_taxCO2eq(t,regi); pm_taxCO2eq(t,regi) = pm_taxCO2eq(t,regi) + pm_taxCO2eq_iterationdiff(t,regi); o_taxCO2eq_iterDiff_Itr(iteration,regi) = pm_taxCO2eq_iterationdiff("2030",regi); - ); + ); ); display o_taxCO2eq_iterDiff_Itr; - + pm_taxCO2eq(t,regi)$(t.val gt 2110) = pm_taxCO2eq("2110",regi); !! to prevent huge taxes after 2110 and the resulting convergence problems, set taxes after 2110 equal to 2110 value display pm_taxCO2eq; ); @@ -176,11 +176,11 @@ display s_actualbudgetco2; *** --------------------------------------------------------------------------------------------------------------- if(cm_iterative_target_adj eq 7, *JeS/CB* Iteratively update regional CO2 tax trajectories / regional CO2 budget to reach the target for global peak budget, but make sure CO2 emissions afterward are close to zero on the global level - -*** Save the original functional form of the CO2 price trajectory so values for all times can be accessed even if the peakBudgYr is shifted. - if( iteration.val eq 1, + +*** Save the original functional form of the CO2 price trajectory so values for all times can be accessed even if the peakBudgYr is shifted. + if( iteration.val eq 1, p_taxCO2eq_until2150(t,regi) = pm_taxCO2eq(t,regi); - ); + ); *KK* p_actualbudgetco2 for ttot > 2020. It includes emissions from 2020 to ttot (including ttot). *** (ttot.val - (ttot - 1).val)/2 and pm_ts("2020")/2 are the time periods that haven't been taken into account in the sum over ttot2. @@ -189,32 +189,32 @@ p_actualbudgetco2(ttot)$(ttot.val > 2020) = sum(ttot2$(ttot2.val < ttot.val AND + sum(regi, (vm_emiTe.l(ttot,regi,"co2") + vm_emiCdr.l(ttot,regi,"co2") + vm_emiMac.l(ttot,regi,"co2"))) * sm_c_2_co2 * ((pm_ttot_val(ttot)-pm_ttot_val(ttot-1))/2 + 0.5) + sum(regi, (vm_emiTe.l("2020",regi,"co2") + vm_emiCdr.l("2020",regi,"co2") + vm_emiMac.l("2020",regi,"co2"))) * sm_c_2_co2 * (pm_ts("2020")/2 + 0.5); s_actualbudgetco2 = smax(t$(t.val le c_peakBudgYr AND t.val le 2100),p_actualbudgetco2(t)); - + o_peakBudgYr_Itr(iteration) = c_peakBudgYr; - -display s_actualbudgetco2; + +display s_actualbudgetco2; display p_actualbudgetco2; if (cm_emiscen eq 9, if(o_modelstat eq 2 AND ord(iteration) 0 AND abs(c_budgetCO2from2020 - s_actualbudgetco2) ge 0.5, !!only for optimal iterations, and not after the last one, and only if budget still possitive, and only if target not yet reached - display pm_taxCO2eq; -*** make sure that iteration converges: -*** use multiplicative for budgets higher than 1600 Gt; for lower budgets, use multiplicative adjustment only for first 3 iterations, + display pm_taxCO2eq; +*** make sure that iteration converges: +*** use multiplicative for budgets higher than 1600 Gt; for lower budgets, use multiplicative adjustment only for first 3 iterations, if(ord(iteration) lt 3 or c_budgetCO2from2020 > 1600, !! change in CO2 price through adjustment: new price - old price; needed for adjustment option 2 pm_taxCO2eq_iterationdiff(t,regi) = pm_taxCO2eq(t,regi) * min(max((s_actualbudgetco2/c_budgetCO2from2020)** (25/(2 * iteration.val + 23)),0.5+iteration.val/208),2 - iteration.val/102) - pm_taxCO2eq(t,regi); pm_taxCO2eq(t,regi)$(t.val le c_peakBudgYr) = pm_taxCO2eq(t,regi) + pm_taxCO2eq_iterationdiff(t,regi) ; p_taxCO2eq_until2150(t,regi) = p_taxCO2eq_until2150(t,regi) + pm_taxCO2eq_iterationdiff(t,regi) ; -*** then switch to triangle-approximation based on last two iteration data points +*** then switch to triangle-approximation based on last two iteration data points else !! change in CO2 price through adjustment: new price - old price; the two instances of "pm_taxCO2eq" cancel out -> only the difference term !! until c_peakBudgYr: expolinear price trajectory - pm_taxCO2eq_iterationdiff_tmp(t,regi) = + pm_taxCO2eq_iterationdiff_tmp(t,regi) = max(pm_taxCO2eq_iterationdiff(t,regi) * min(max((c_budgetCO2from2020 - s_actualbudgetco2)/(s_actualbudgetco2 - s_actualbudgetco2_last),-2),2),-pm_taxCO2eq(t,regi)/2); - pm_taxCO2eq(t,regi)$(t.val le c_peakBudgYr) = pm_taxCO2eq(t,regi) + + pm_taxCO2eq(t,regi)$(t.val le c_peakBudgYr) = pm_taxCO2eq(t,regi) + max(pm_taxCO2eq_iterationdiff(t,regi) * min(max((c_budgetCO2from2020 - s_actualbudgetco2)/(s_actualbudgetco2 - s_actualbudgetco2_last),-2),2),-pm_taxCO2eq(t,regi)/2); - p_taxCO2eq_until2150(t,regi) = p_taxCO2eq_until2150(t,regi) + + p_taxCO2eq_until2150(t,regi) = p_taxCO2eq_until2150(t,regi) + max(pm_taxCO2eq_iterationdiff(t,regi) * min(max((c_budgetCO2from2020 - s_actualbudgetco2)/(s_actualbudgetco2 - s_actualbudgetco2_last),-2),2),-p_taxCO2eq_until2150(t,regi)/2); pm_taxCO2eq_iterationdiff(t,regi) = pm_taxCO2eq_iterationdiff_tmp(t,regi); !! after c_peakBudgYr: adjustment so that emissions become zero: increase/decrease tax in each time step after c_peakBudgYr by percentage of that year's total CO2 emissions of 2015 emissions @@ -228,7 +228,7 @@ display p_actualbudgetco2; *** if budget has turned negative, reduce CO2 price by 20% pm_taxCO2eq(t,regi) = 0.8*pm_taxCO2eq(t,regi); p_taxCO2eq_until2150(t,regi) = 0.8*p_taxCO2eq_until2150(t,regi); - ); + ); ); *** after c_peakBudgYr: always adjust to bring emissions close to zero pm_taxCO2eq(t,regi)$(t.val gt c_peakBudgYr) = pm_taxCO2eq(t,regi) + pm_taxCO2eq(t,regi)*max(sum(regi2,vm_emiAll.l(t,regi2,"co2"))/sum(regi2,vm_emiAll.l("2015",regi2,"co2")),-0.75); @@ -238,13 +238,13 @@ display p_actualbudgetco2; o_diff_to_Budg(iteration) = (c_budgetCO2from2020 - s_actualbudgetco2); o_totCO2emi_peakBudgYr(iteration) = sum(t$(t.val = c_peakBudgYr), sum(regi2, vm_emiAll.l(t,regi2,"co2")) ); o_totCO2emi_allYrs(t,iteration) = sum(regi2, vm_emiAll.l(t,regi2,"co2") ); - o_change_totCO2emi_peakBudgYr(iteration) = sum(ttot$(ttot.val = c_peakBudgYr), (o_totCO2emi_allYrs(ttot-1,iteration) - o_totCO2emi_allYrs(ttot+1,iteration) )/4 ); !! Only gives a tolerance range, exact value not important. Division by 4 somewhat arbitrary - could be 3 or 5 as well. + o_change_totCO2emi_peakBudgYr(iteration) = sum(ttot$(ttot.val = c_peakBudgYr), (o_totCO2emi_allYrs(ttot-1,iteration) - o_totCO2emi_allYrs(ttot+1,iteration) )/4 ); !! Only gives a tolerance range, exact value not important. Division by 4 somewhat arbitrary - could be 3 or 5 as well. display c_peakBudgYr, o_diff_to_Budg, o_peakBudgYr_Itr, o_totCO2emi_allYrs, o_totCO2emi_peakBudgYr, o_change_totCO2emi_peakBudgYr; ***if( sum(t,sum(regi2,vm_emiAll.l(t,regi2,"co2")$(t.val = c_peakBudgYr))) < -0.1, *** c_peakBudgYr = tt.val(t - 1)$(t.val = c_peakBudgYr); -***); +***); if( abs(o_diff_to_Budg(iteration)) < 20, !! only think about shifting peakBudgYr if the budget is close enough to target budget display "close enough to target budget to check timing of peak year"; @@ -252,7 +252,7 @@ display p_actualbudgetco2; *** if( ( (o_totCO2emi_peakBudgYr(iteration) < -(0.1 + o_change_totCO2emi_peakBudgYr(iteration)) ) AND (c_peakBudgYr > 2040) ), !! no peaking time before 2040 if( ( (o_totCO2emi_peakBudgYr(iteration) < -(0.1) ) AND (c_peakBudgYr > 2040) ), !! no peaking time before 2040 display "shift peakBudgYr left"; - o_peakBudgYr_Itr(iteration+1) = pm_ttot_val(ttot - 1); + o_peakBudgYr_Itr(iteration+1) = pm_ttot_val(ttot - 1); *** pm_taxCO2eq(t,regi)$(t.val gt pm_ttot_val(ttot - 1)) = p_taxCO2eq_until2150(ttot-1,regi) + (t.val - pm_ttot_val(ttot - 1)) * c_taxCO2inc_after_peakBudgYr * sm_DptCO2_2_TDpGtC; !! increase by c_taxCO2inc_after_peakBudgYr per year after peakBudgYr *** if tax after c_peakBudgYr is higher than normal increase rate (exceeding a 20% tolerance): shift right elseif( ( sum(regi, sum(t2$(t2.val = pm_ttot_val(ttot+1)),pm_taxCO2eq(t2,regi))) > sum(regi,sum(t2$(t2.val = pm_ttot_val(ttot+1)),p_taxCO2eq_until2150(t2,regi)))*1.2 ) AND (c_peakBudgYr < 2100) ), !! if peaking time would be after 2100, keep 2100 budget year @@ -265,7 +265,7 @@ display p_actualbudgetco2; pm_taxCO2eq(t,regi) = p_taxCO2eq_until2150(t,regi); ); ); - + else !! don't do anything if the peakBudgYr is already at the corner values (2040, 2100) or if the emissions in the peakBudgYr are close to 0 o_peakBudgYr_Itr(iteration+1) = o_peakBudgYr_Itr(iteration) ); @@ -277,7 +277,7 @@ display p_actualbudgetco2; - + pm_taxCO2eq(t,regi)$(t.val gt 2110) = pm_taxCO2eq("2110",regi); !! to prevent huge taxes after 2110 and the resulting convergence problems, set taxes after 2110 equal to 2110 value display pm_taxCO2eq; ); @@ -312,24 +312,24 @@ if (cm_iterative_target_adj eq 9, * sm_c_2_co2; s_actualbudgetco2 = smax(t$( t.val le c_peakBudgYr ), p_actualbudgetco2(t)); - + o_peakBudgYr_Itr(iteration) = c_peakBudgYr; - + display s_actualbudgetco2, p_actualbudgetco2; if(cm_emiscen eq 9, - -*** --------A: calculate the new CO2 price path, the CO2 tax rescale factor---------------------------------------------------------- - + +*** --------A: calculate the new CO2 price path, the CO2 tax rescale factor---------------------------------------------------------- + if(o_modelstat eq 2 AND ord(iteration) < cm_iteration_max AND s_actualbudgetco2 > 0 AND abs(c_budgetCO2from2020 - s_actualbudgetco2) ge 2, !!only for optimal iterations, and not after the last one, and only if budget still possitive, and only if target not yet reached display pm_taxCO2eq; - if( ( ( p_actualbudgetco2("2100") > 1.1 * s_actualbudgetco2 ) AND ( abs(c_budgetCO2from2020 - s_actualbudgetco2) < 50 ) AND (iteration.val < 12) ), + if( ( ( p_actualbudgetco2("2100") > 1.1 * s_actualbudgetco2 ) AND ( abs(c_budgetCO2from2020 - s_actualbudgetco2) < 50 ) AND (iteration.val < 12) ), display iteration; -*** if end-of-century budget is higher than budget at peak point, AND end-of-century budget is already in the range of the target budget (+/- 50 GtC), treat as end-of-century budget +*** if end-of-century budget is higher than budget at peak point, AND end-of-century budget is already in the range of the target budget (+/- 50 GtC), treat as end-of-century budget *** for this iteration. Only do this rough approach (jump to 2100) for the first iterations - at later iterations the slower adjustment of the peaking time should work better display "this is likely an end-of-century budget with no net negative emissions at all. Shift c_peakBudgYr to 2100"; - s_actualbudgetco2 = 0.5 * (p_actualbudgetco2("2100") + s_actualbudgetco2); !! due to the potential strong jump in c_peakBudgYr, which implies that the CO2 price + s_actualbudgetco2 = 0.5 * (p_actualbudgetco2("2100") + s_actualbudgetco2); !! due to the potential strong jump in c_peakBudgYr, which implies that the CO2 price *** will increase over a longer time horizon, take the average of the budget at the old peak time and the new peak time c_peakBudgYr = 2100; ); @@ -357,12 +357,12 @@ if (cm_iterative_target_adj eq 9, o_taxCO2eq_iterDiff_Itr(iteration,regi) = pm_taxCO2eq_iterationdiff("2030",regi); loop(regi, !! not a nice solution to having only the price of one regi display (for better visibility), but this way it overwrites again and again until the value from the last regi remain - o_taxCO2eq_Itr_1regi(t,iteration+1) = pm_taxCO2eq(t,regi); + o_taxCO2eq_Itr_1regi(t,iteration+1) = pm_taxCO2eq(t,regi); ); - + display o_taxCO2eq_iterDiff_Itr, o_taxCO2eq_Itr_1regi; - - + + else !! if(o_modelstat eq 2 AND ord(iteration) 0 AND abs(c_budgetCO2from2020 )) if(s_actualbudgetco2 > 0 or abs(c_budgetCO2from2020 - s_actualbudgetco2) < 2, !! if model was not optimal, or if budget already reached, keep tax constant p_factorRescale_taxCO2(iteration) = 1; @@ -372,43 +372,43 @@ if (cm_iterative_target_adj eq 9, *** if budget has turned negative, reduce CO2 price by 20% p_factorRescale_taxCO2(iteration) = 0.8; p_factorRescale_taxCO2_Funneled(iteration) = p_factorRescale_taxCO2(iteration); - + p_taxCO2eq_until2150(t,regi) = p_factorRescale_taxCO2(iteration) * p_taxCO2eq_until2150(t,regi); pm_taxCO2eq(t,regi) = p_factorRescale_taxCO2(iteration) * pm_taxCO2eq(t,regi); - ); + ); ); !! if(o_modelstat eq 2 AND ord(iteration) 0 AND abs(c_budgetCO2from2020 - s_actualbudgetco2) ge 2, - + display pm_taxCO2eq, p_taxCO2eq_until2150; - + *** -------B: checking the peak timing, if c_peakBudgYr is still correct or needs to be shifted----------------------- o_diff_to_Budg(iteration) = (c_budgetCO2from2020 - s_actualbudgetco2); o_totCO2emi_peakBudgYr(iteration) = sum(t$(t.val = c_peakBudgYr), sum(regi2, vm_emiAll.l(t,regi2,"co2")) ); o_totCO2emi_allYrs(t,iteration) = sum(regi2, vm_emiAll.l(t,regi2,"co2") ); - -*RP* calculate how fast emissions are changing around the peaking time to get an idea how close it is possible to get to 0 due to the 5(10) year time steps - o_change_totCO2emi_peakBudgYr(iteration) = sum(ttot$(ttot.val = c_peakBudgYr), (o_totCO2emi_allYrs(ttot-1,iteration) - o_totCO2emi_allYrs(ttot+1,iteration) )/4 ); !! Only gives a tolerance range, exact value not important. Division by 4 somewhat arbitrary - could be 3 or 5 as well. + +*RP* calculate how fast emissions are changing around the peaking time to get an idea how close it is possible to get to 0 due to the 5(10) year time steps + o_change_totCO2emi_peakBudgYr(iteration) = sum(ttot$(ttot.val = c_peakBudgYr), (o_totCO2emi_allYrs(ttot-1,iteration) - o_totCO2emi_allYrs(ttot+1,iteration) )/4 ); !! Only gives a tolerance range, exact value not important. Division by 4 somewhat arbitrary - could be 3 or 5 as well. display c_peakBudgYr, o_diff_to_Budg, o_peakBudgYr_Itr, o_totCO2emi_allYrs, o_totCO2emi_peakBudgYr, o_change_totCO2emi_peakBudgYr; -*** ----B1: check if c_peakBudgYr should be shifted left or right: +*** ----B1: check if c_peakBudgYr should be shifted left or right: if( abs(o_diff_to_Budg(iteration)) < 20, !! only think about shifting peakBudgYr if the budget is close enough to target budget display "close enough to target budget to check timing of peak year"; - + !! check if the target year was just shifted back left after being shifted right before if ( (iteration.val > 2) AND ( o_peakBudgYr_Itr(iteration - 1) > o_peakBudgYr_Itr(iteration) ) AND ( o_peakBudgYr_Itr(iteration - 2) = o_peakBudgYr_Itr(iteration) ), - o_pkBudgYr_flipflop(iteration) = 1; + o_pkBudgYr_flipflop(iteration) = 1; display "flipflop observed (before loop)"; ); - + loop(ttot$(ttot.val = c_peakBudgYr), !! look at the peak timing if( ( (o_totCO2emi_peakBudgYr(iteration) < -(0.1 + o_change_totCO2emi_peakBudgYr(iteration)) ) AND (c_peakBudgYr > 2040) ), !! no peaking time before 2040 display "shift peakBudgYr left"; - o_peakBudgYr_Itr(iteration+1) = pm_ttot_val(ttot - 1); + o_peakBudgYr_Itr(iteration+1) = pm_ttot_val(ttot - 1); pm_taxCO2eq(t,regi)$(t.val gt pm_ttot_val(ttot - 1)) = p_taxCO2eq_until2150(ttot-1,regi) + (t.val - pm_ttot_val(ttot - 1)) * c_taxCO2inc_after_peakBudgYr * sm_DptCO2_2_TDpGtC; !! increase by c_taxCO2inc_after_peakBudgYr per year after peakBudgYr - + elseif ( ( o_totCO2emi_peakBudgYr(iteration) > (0.1 + o_change_totCO2emi_peakBudgYr(iteration)) ) AND (c_peakBudgYr < 2100) ), !! if peaking time would be after 2100, keep 2100 budget year if( (o_pkBudgYr_flipflop(iteration) eq 1), !! if the target year was just shifted left after being shifted right, and would now be shifted right again display "peakBudgYr was left, right, left and is now supposed to be shifted right again -> flipflop, thus go into separate loop"; @@ -421,11 +421,11 @@ if (cm_iterative_target_adj eq 9, display "shift peakBudgYr right"; o_peakBudgYr_Itr(iteration+1) = pm_ttot_val(ttot + 1); !! ttot+1 is the new peakBudgYr loop(t$(t.val ge pm_ttot_val(ttot + 1)), - pm_taxCO2eq(t,regi) = p_taxCO2eq_until2150(ttot+1,regi) - + (t.val - pm_ttot_val(ttot + 1)) * c_taxCO2inc_after_peakBudgYr * sm_DptCO2_2_TDpGtC; !! increase by c_taxCO2inc_after_peakBudgYr per year + pm_taxCO2eq(t,regi) = p_taxCO2eq_until2150(ttot+1,regi) + + (t.val - pm_ttot_val(ttot + 1)) * c_taxCO2inc_after_peakBudgYr * sm_DptCO2_2_TDpGtC; !! increase by c_taxCO2inc_after_peakBudgYr per year ); ); - + else !! don't do anything if the peakBudgYr is already at the corner values (2040, 2100) or if the emissions in the peakBudgYr are close enough to 0 (within the range of +/- o_change_totCO2emi_peakBudgYr) o_peakBudgYr_Itr(iteration+1) = o_peakBudgYr_Itr(iteration) ); @@ -433,34 +433,34 @@ if (cm_iterative_target_adj eq 9, c_peakBudgYr = o_peakBudgYr_Itr(iteration+1); display c_peakBudgYr; ); - + pm_taxCO2eq(t,regi)$(t.val le c_peakBudgYr) = p_taxCO2eq_until2150(t,regi); !! until peakBudgYr, take the contiuous price trajectory - -*** -----B2: if there was a flip-floping of c_peakBudgYr in the previous iterations, try to overome this by adjusting the CO2 price path after the peaking year - if (o_delay_increase_peakBudgYear(iteration) = 1, + +*** -----B2: if there was a flip-floping of c_peakBudgYr in the previous iterations, try to overome this by adjusting the CO2 price path after the peaking year + if (o_delay_increase_peakBudgYear(iteration) = 1, display "not shifting peakBudgYr right, instead adjusting CO2 price for following year"; - loop(ttot$(ttot.val eq c_peakBudgYr), !! set ttot to the current peakBudgYr + loop(ttot$(ttot.val eq c_peakBudgYr), !! set ttot to the current peakBudgYr loop(t2$(t2.val eq pm_ttot_val(ttot+1)), !! set t2 to the following time step - o_factorRescale_taxCO2_afterPeakBudgYr(iteration) = 1 + max(sum(regi2,vm_emiAll.l(ttot,regi2,"co2"))/sum(regi2,vm_emiAll.l("2015",regi2,"co2")),-0.75) ; - !! this was inspired by Christoph's approach. This value is 1 if emissions in the peakBudgYr are 0; goes down to 0.25 if emissions are <0 and approaching the size of 2015 emissions, and > 1 if emissions > 0. - + o_factorRescale_taxCO2_afterPeakBudgYr(iteration) = 1 + max(sum(regi2,vm_emiAll.l(ttot,regi2,"co2"))/sum(regi2,vm_emiAll.l("2015",regi2,"co2")),-0.75) ; + !! this was inspired by Christoph's approach. This value is 1 if emissions in the peakBudgYr are 0; goes down to 0.25 if emissions are <0 and approaching the size of 2015 emissions, and > 1 if emissions > 0. + !! in case the normal linear extension still is not enough to get emissions to 0 after the peakBudgYr, shift peakBudgYr right again: - if( ( o_reached_until2150pricepath(iteration-1) eq 1 ) AND ( o_totCO2emi_peakBudgYr(iteration) > (0.1 + o_change_totCO2emi_peakBudgYr(iteration)) ), + if( ( o_reached_until2150pricepath(iteration-1) eq 1 ) AND ( o_totCO2emi_peakBudgYr(iteration) > (0.1 + o_change_totCO2emi_peakBudgYr(iteration)) ), display "price in following year reached original path in previous iteration and is still not enough -> shift peakBudgYr to right"; o_delay_increase_peakBudgYear(iteration+1) = 0; !! probably is not necessary o_reached_until2150pricepath(iteration) = 0; o_peakBudgYr_Itr(iteration+1) = t2.val; !! shift PeakBudgYear to the following time step c_peakBudgYr = o_peakBudgYr_Itr(iteration+1); pm_taxCO2eq(t2,regi) = p_taxCO2eq_until2150(t2,regi) ; !! set CO2 price in t2 to value in the "continuous path" - + display c_peakBudgYr; - elseif ( ( o_reached_until2150pricepath(iteration-1) eq 1 ) AND ( o_totCO2emi_peakBudgYr(iteration) < (0.1 + o_change_totCO2emi_peakBudgYr(iteration)) ) ), - display "New intermediate price in timestep after c_peakBudgYr is sufficient to stabilize peaking year - go back to normal loop"; + elseif ( ( o_reached_until2150pricepath(iteration-1) eq 1 ) AND ( o_totCO2emi_peakBudgYr(iteration) < (0.1 + o_change_totCO2emi_peakBudgYr(iteration)) ) ), + display "New intermediate price in timestep after c_peakBudgYr is sufficient to stabilize peaking year - go back to normal loop"; o_delay_increase_peakBudgYear(iteration+1) = 0; !! probably is not necessary o_reached_until2150pricepath(iteration) = 0; - o_peakBudgYr_Itr(iteration+1) = o_peakBudgYr_Itr(iteration); + o_peakBudgYr_Itr(iteration+1) = o_peakBudgYr_Itr(iteration); c_peakBudgYr = o_peakBudgYr_Itr(iteration+1); - else !! either didn't reach the continued "until2150"-price path in last iteration, or the increase was high enough to get emissions to 0. + else !! either didn't reach the continued "until2150"-price path in last iteration, or the increase was high enough to get emissions to 0. !! in this case, keep PeakBudgYr, and adjust the price in the year after the peakBudgYr to get emissions close to 0, o_delay_increase_peakBudgYear(iteration+1) = 1; !! make sure next iteration peakBudgYr is not shifted right again o_peakBudgYr_Itr(iteration+1) = o_peakBudgYr_Itr(iteration); @@ -468,27 +468,27 @@ if (cm_iterative_target_adj eq 9, pm_taxCO2eq(t2,regi) * (o_factorRescale_taxCO2_afterPeakBudgYr(iteration) / p_factorRescale_taxCO2_Funneled(iteration) ) !! the full path was already rescaled by p_factorRescale_taxCO2_Funneled, so adjust the second rescaling ); loop(regi, !! this loop is necessary to allow the <-comparison in the next if statement - if( p_taxCO2eq_until2150(t2,regi) < pm_taxCO2eq(t2,regi) , !! check if new price would be higher than the price if the peakBudgYr would be one timestep later - display "price increase reached price from path with c_peakBudgYr one timestep later - downscale to 99%"; - pm_taxCO2eq(t2,regi) = 0.99 * p_taxCO2eq_until2150(t2,regi); !! reduce the new CO2 price to 99% of the price that it would be if the peaking year was one timestep later. The next iteration will show if this is enough, otherwise c_peakBudgYr will be shifted right - o_reached_until2150pricepath(iteration) = 1; !! upward CO2 price correction reached the continued price path - check in next iteration if this is high enough. + if( p_taxCO2eq_until2150(t2,regi) < pm_taxCO2eq(t2,regi) , !! check if new price would be higher than the price if the peakBudgYr would be one timestep later + display "price increase reached price from path with c_peakBudgYr one timestep later - downscale to 99%"; + pm_taxCO2eq(t2,regi) = 0.99 * p_taxCO2eq_until2150(t2,regi); !! reduce the new CO2 price to 99% of the price that it would be if the peaking year was one timestep later. The next iteration will show if this is enough, otherwise c_peakBudgYr will be shifted right + o_reached_until2150pricepath(iteration) = 1; !! upward CO2 price correction reached the continued price path - check in next iteration if this is high enough. ); ); ); - + display o_factorRescale_taxCO2_afterPeakBudgYr; pm_taxCO2eq(t,regi)$(t.val gt t2.val) = pm_taxCO2eq(t2,regi) + (t.val - t2.val) * c_taxCO2inc_after_peakBudgYr * sm_DptCO2_2_TDpGtC; !! increase by c_taxCO2inc_after_peakBudgYr per year - + ); !! loop t2$(t2.val eq pm_ttot_val(ttot+1)), !! set t2 to the following time step - ); !! loop ttot$(ttot.val eq c_peakBudgYr), !! set ttot to the current peakBudgYr + ); !! loop ttot$(ttot.val eq c_peakBudgYr), !! set ttot to the current peakBudgYr c_peakBudgYr = o_peakBudgYr_Itr(iteration+1); !! this has to happen outside the loop, otherwise the loop condition might be true twice ); !! if o_delay_increase_peakBudgYear(iteration) = 1, !! if there was a flip-floping in the previous iterations, try to solve this - - + + loop(regi, !! not a nice solution to having only the price of one regi display (for better visibility), but this way it overwrites again and again until the value from the last regi remain - o_taxCO2eq_afterPeakShiftLoop_Itr_1regi(t,iteration+1) = pm_taxCO2eq(t,regi); + o_taxCO2eq_afterPeakShiftLoop_Itr_1regi(t,iteration+1) = pm_taxCO2eq(t,regi); ); - + display o_delay_increase_peakBudgYear, o_reached_until2150pricepath, pm_taxCO2eq, o_peakBudgYr_Itr, o_taxCO2eq_afterPeakShiftLoop_Itr_1regi, o_pkBudgYr_flipflop; ); !! if cm_emiscen eq 9, ); !! if cm_iterative_target_adj eq 9, @@ -504,27 +504,27 @@ s_actualbudgetco2_last = s_actualbudgetco2; ***----------------------------------------------- *NB* this is only relevant for reporting purposes. With reporting tranferred to R, the entire part will become obsolete. -loop ((ttot,regi), +loop ((ttot,regi), - if (sum(se2fe("seh2",entyFe,te), vm_demSe.l(ttot,regi,"seh2",entyFe,te)) ne 0, - p_share_seh2_s(ttot,regi) = - sum(se2fe("seh2","feh2s",te), vm_demSe.l(ttot,regi,"seh2","feh2s",te)) - / sum(se2fe("seh2", entyFe, te), vm_demSe.l(ttot,regi,"seh2", entyFe, te)); - else + if (sum(se2fe("seh2",entyFe,te), vm_demSe.l(ttot,regi,"seh2",entyFe,te)) ne 0, + p_share_seh2_s(ttot,regi) = + sum(se2fe("seh2","feh2s",te), vm_demSe.l(ttot,regi,"seh2","feh2s",te)) + / sum(se2fe("seh2", entyFe, te), vm_demSe.l(ttot,regi,"seh2", entyFe, te)); + else p_share_seh2_s(ttot,regi) = NA; ); - if (sum(se2fe("seel",entyFe,te), vm_demSe.l(ttot,regi,"seel",entyFe,te)) ne 0, - p_share_seel_s(ttot,regi) = - sum(se2fe("seel","feels",te), vm_demSe.l(ttot,regi,"seel","feels",te)) - / sum(se2fe("seel", entyFe, te), vm_demSe.l(ttot,regi,"seel", entyFe, te)); + if (sum(se2fe("seel",entyFe,te), vm_demSe.l(ttot,regi,"seel",entyFe,te)) ne 0, + p_share_seel_s(ttot,regi) = + sum(se2fe("seel","feels",te), vm_demSe.l(ttot,regi,"seel","feels",te)) + / sum(se2fe("seel", entyFe, te), vm_demSe.l(ttot,regi,"seel", entyFe, te)); else p_share_seel_s(ttot,regi) = NA; ); if (sum(se2fe(entySe,entyFe,te)$(sameas(entySe,"seliqfos") OR sameas(entySe,"seliqbio")), - vm_demSe.l(ttot,regi,entySe,entyFe,te)) ne 0, - p_share_seliq_s(ttot,regi) = + vm_demSe.l(ttot,regi,entySe,entyFe,te)) ne 0, + p_share_seliq_s(ttot,regi) = ( sum(se2fe("seliqfos","fehos",te), vm_demSe.l(ttot,regi,"seliqfos","fehos",te)) + sum(se2fe("seliqbio","fehos",te), vm_demSe.l(ttot,regi,"seliqbio","fehos",te)) ) / ( sum(se2fe("seliqfos",entyFe,te), vm_demSe.l(ttot,regi,"seliqfos",entyFe,te)) + sum(se2fe("seliqbio",entyFe,te), vm_demSe.l(ttot,regi,"seliqbio",entyFe,te)) ) ; @@ -532,14 +532,14 @@ loop ((ttot,regi), p_share_seliq_s(ttot,regi) = NA; ); -); +); DISPLAY p_share_seliq_s, p_share_seh2_s, p_share_seel_s; *LB* update parameter that are used for variables during the run pm_gdp_gdx(ttot,regi)$(ttot.val ge 2005) = vm_cesIO.l(ttot,regi,"inco"); -p_inv_gdx(ttot,regi)$(ttot.val ge 2005) = vm_invMacro.l(ttot,regi,"kap"); +pm_inv_gdx(ttot,regi)$(ttot.val ge 2005) = vm_invMacro.l(ttot,regi,"kap"); pm_GDPGross(ttot,regi)$( (pm_SolNonInfes(regi) eq 1) ) = vm_cesIO.l(ttot,regi,"inco"); @@ -553,7 +553,7 @@ loop(ttot$(ttot.val ge 2005), )); *** assume GDP is flat from 2150 on (only enters damage calculations in the far future) -pm_GDPGross(tall,regi)$(tall.val ge 2150) = pm_GDPGross("2149",regi); +pm_GDPGross(tall,regi)$(tall.val ge 2150) = pm_GDPGross("2149",regi); *** CG: calculate marginal adjustment cost for capacity investment: d(vm_costInvTeAdj) / d(vm_deltaCap) !!!! the closed formula only holds when v_adjFactorGlob.fx(t,regi,te) = 0; @@ -577,33 +577,33 @@ o_avgAdjCostInv(ttot,regi,te)$(ttot.val ge 2010 AND teAdj(te) AND (sum(te2rlf(te o_avgAdjCost_2_InvCost_ratioPc(ttot,regi,te)$(vm_costInvTeDir.l(ttot,regi,te) ge 1E-22) = vm_costInvTeAdj.l(ttot,regi,te)/vm_costInvTeDir.l(ttot,regi,te) * 100; *** calculation of PE and SE Prices (useful for internal use and reporting purposes) -pm_SEPrice(ttot,regi,entySe)$(abs (qm_budget.m(ttot,regi)) gt sm_eps AND (NOT (sameas(entySe,"seel")))) = +pm_SEPrice(ttot,regi,entySe)$(abs (qm_budget.m(ttot,regi)) gt sm_eps AND (NOT (sameas(entySe,"seel")))) = q_balSe.m(ttot,regi,entySe) / qm_budget.m(ttot,regi); -pm_PEPrice(ttot,regi,entyPe)$(abs (qm_budget.m(ttot,regi)) gt sm_eps) = +pm_PEPrice(ttot,regi,entyPe)$(abs (qm_budget.m(ttot,regi)) gt sm_eps) = q_balPe.m(ttot,regi,entyPe) / qm_budget.m(ttot,regi); *** calculate share of stored CO2 from captured CO2 pm_share_CCS_CCO2(t,regi) = sum(teCCS2rlf(te,rlf), vm_co2CCS.l(t,regi,"cco2","ico2",te,rlf)) / (sum(teCCS2rlf(te,rlf), vm_co2capture.l(t,regi,"cco2","ico2",te,rlf))+sm_eps); *** emissions reporting helper parameters -o_emissions_bunkers(ttot,regi,emi)$(ttot.val ge 2005) = +o_emissions_bunkers(ttot,regi,emi)$(ttot.val ge 2005) = sum(se2fe(enty,enty2,te), pm_emifac(ttot,regi,enty,enty2,te,emi) * vm_demFeSector.l(ttot,regi,enty,enty2,"trans","other") )*o_emi_conv(emi); -o_emissions(ttot,regi,emi)$(ttot.val ge 2005) = +o_emissions(ttot,regi,emi)$(ttot.val ge 2005) = sum(emiMkt, vm_emiAllMkt.l(ttot,regi,emi,emiMkt))*o_emi_conv(emi) - o_emissions_bunkers(ttot,regi,emi); -*** note! this still excludes industry CCS and CCU. To fix. -o_emissions_energy(ttot,regi,emi)$(ttot.val ge 2005) = +*** note! this still excludes industry CCS and CCU. To fix. +o_emissions_energy(ttot,regi,emi)$(ttot.val ge 2005) = sum(emiMkt, vm_emiTeMkt.l(ttot,regi,emi,emiMkt))*o_emi_conv(emi) - o_emissions_bunkers(ttot,regi,emi); -*** note! this still excludes industry CCS. To fix. -o_emissions_energy_demand(ttot,regi,emi)$(ttot.val ge 2005) = +*** note! this still excludes industry CCS. To fix. +o_emissions_energy_demand(ttot,regi,emi)$(ttot.val ge 2005) = sum(sector2emiMkt(sector,emiMkt), sum(se2fe(enty,enty2,te), pm_emifac(ttot,regi,enty,enty2,te,emi) @@ -636,17 +636,17 @@ o_emissions_energy_demand_sector(ttot,regi,emi,sector)$(ttot.val ge 2005) = o_emissions_energy_extraction(ttot,regi,emi,entyPe)$(ttot.val ge 2005) = *** emissions from non-conventional fuel extraction ( - ( sum(emi2fuelMine(emi,entyPe,rlf), + ( sum(emi2fuelMine(emi,entyPe,rlf), p_cint(regi,emi,entyPe,rlf) * vm_fuExtr.l(ttot,regi,entyPe,rlf) )$( c_cint_scen eq 1 ) ) *** emissions from conventional fuel extraction - + ( sum(pe2rlf(entyPe,rlf2),sum(enty2, + + ( sum(pe2rlf(entyPe,rlf2),sum(enty2, (pm_cintraw(enty2) - * pm_fuExtrOwnCons(regi, enty2, entyPe) + * pm_fuExtrOwnCons(regi, enty2, entyPe) * vm_fuExtr.l(ttot,regi,entyPe,rlf2) - )$(pm_fuExtrOwnCons(regi, entyPe, enty2) gt 0) + )$(pm_fuExtrOwnCons(regi, entyPe, enty2) gt 0) )) ) )*o_emi_conv(emi) @@ -676,7 +676,7 @@ o_emissions_energy_supply_gross(ttot,regi,emi)$(ttot.val ge 2005) = + sum(entyPe, o_emissions_energy_extraction(ttot,regi,emi,entyPe)) ; - + o_emissions_energy_supply_gross_carrier(ttot,regi,emi,entySe)$(ttot.val ge 2005) = sum((entyPe,te)$(pe2se(entyPe,entySe,te) AND (pm_emifac(ttot,regi,entyPe,entySe,te,emi)>0)), pm_emifac(ttot,regi,entyPe,entySe,te,emi) @@ -691,7 +691,7 @@ o_emissions_energy_supply_gross_carrier(ttot,regi,emi,entySe)$(ttot.val ge 2005) o_emissions_energy_extraction(ttot,regi,emi,"pegas") )$(sameas(entySe,"segafos")) + - ( + ( o_emissions_energy_extraction(ttot,regi,emi,"peoil") )$(sameas(entySe,"seliqfos")) ; @@ -798,15 +798,15 @@ o_carbon_LandUse(ttot,regi,"co2")$(ttot.val ge 2005) = ***Carbon Management|Underground Storage (Mt CO2/yr) o_carbon_underground(ttot,regi,"co2")$(ttot.val ge 2005) = - sum(teCCS2rlf(te,rlf), + sum(teCCS2rlf(te,rlf), vm_co2CCS.l(ttot,regi,"cco2","ico2",te,rlf) - )*o_emi_conv("co2") + )*o_emi_conv("co2") ; - + ***Carbon Management|Carbon Re-emitted (Mt CO2/yr) o_carbon_reemitted(ttot,regi,"co2")$(ttot.val ge 2005) = - v_co2capturevalve.l(ttot,regi) - *o_emi_conv("co2") + v_co2capturevalve.l(ttot,regi) + *o_emi_conv("co2") ; *CG**ML*: capital interest rate @@ -836,10 +836,10 @@ loop((t,regi,entySe,entyFe,sector,emiMkt)$(sefe(entySe,entyFe) AND sector2emiMkt p_FEPrice_by_EmiMkt(t,regi,entyFe,emiMkt)=0; p_FEPrice_by_FE(t,regi,entyFe)=0; -*** lower level marginal price is equal to non-zero, non-eps minimal price at higher level - loop(entySe2, +*** lower level marginal price is equal to non-zero, non-eps minimal price at higher level + loop(entySe2, p_FEPrice_by_Sector_EmiMkt(t,regi,entyFe,sector,emiMkt)$( - (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe2,entyFe,sector,emiMkt) > EPS) + (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe2,entyFe,sector,emiMkt) > EPS) AND ( (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe2,entyFe,sector,emiMkt) < p_FEPrice_by_Sector_EmiMkt(t,regi,entyFe,sector,emiMkt)) OR (p_FEPrice_by_Sector_EmiMkt(t,regi,entyFe,sector,emiMkt) eq 0) @@ -847,63 +847,63 @@ loop((t,regi,entySe,entyFe,sector,emiMkt)$(sefe(entySe,entyFe) AND sector2emiMkt = p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe2,entyFe,sector,emiMkt); ); - loop(emiMkt2, + loop(emiMkt2, pm_FEPrice_by_SE_Sector(t,regi,entySe,entyFe,sector)$( - (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe,entyFe,sector,emiMkt2) > EPS) + (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe,entyFe,sector,emiMkt2) > EPS) AND ( (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe,entyFe,sector,emiMkt2) < pm_FEPrice_by_SE_Sector(t,regi,entySe,entyFe,sector)) OR (pm_FEPrice_by_SE_Sector(t,regi,entySe,entyFe,sector) eq 0) - )) + )) = p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe,entyFe,sector,emiMkt2); ); loop(sector2, p_FEPrice_by_SE_EmiMkt(t,regi,entySe,entyFe,emiMkt)$( - (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe,entyFe,sector2,emiMkt) > EPS) + (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe,entyFe,sector2,emiMkt) > EPS) AND ( (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe,entyFe,sector2,emiMkt) < p_FEPrice_by_SE_EmiMkt(t,regi,entySe,entyFe,emiMkt)) OR (p_FEPrice_by_SE_EmiMkt(t,regi,entySe,entyFe,emiMkt) eq 0) - )) + )) = p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe,entyFe,sector2,emiMkt); ); - loop((sector2,emiMkt2)$sector2emiMkt(sector2,emiMkt2), + loop((sector2,emiMkt2)$sector2emiMkt(sector2,emiMkt2), p_FEPrice_by_SE(t,regi,entySe,entyFe)$( - (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe,entyFe,sector2,emiMkt2) > EPS) - AND + (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe,entyFe,sector2,emiMkt2) > EPS) + AND ( (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe,entyFe,sector2,emiMkt2) < p_FEPrice_by_SE(t,regi,entySe,entyFe)) OR (p_FEPrice_by_SE(t,regi,entySe,entyFe) eq 0) - )) + )) = p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe,entyFe,sector2,emiMkt2); ); loop((entySe2,emiMkt2), !! take minimal non-zero price for aggregation if carrier has no quantity in the model p_FEPrice_by_Sector(t,regi,entyFe,sector)$( - (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe2,entyFe,sector,emiMkt2) > EPS) - AND + (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe2,entyFe,sector,emiMkt2) > EPS) + AND ( (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe2,entyFe,sector,emiMkt2) < p_FEPrice_by_Sector(t,regi,entyFe,sector)) OR (p_FEPrice_by_Sector(t,regi,entyFe,sector) eq 0) - )) + )) = p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe2,entyFe,sector,emiMkt2); ); loop((entySe2,sector2), !! take minimal non-zero price for aggregation if carrier has no quantity in the model p_FEPrice_by_EmiMkt(t,regi,entyFe,emiMkt)$( - (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe2,entyFe,sector2,emiMkt) > EPS) - AND + (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe2,entyFe,sector2,emiMkt) > EPS) + AND ( (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe2,entyFe,sector2,emiMkt) < p_FEPrice_by_EmiMkt(t,regi,entyFe,emiMkt)) OR (p_FEPrice_by_EmiMkt(t,regi,entyFe,emiMkt) eq 0) - )) + )) = p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe2,entyFe,sector2,emiMkt); ); loop((entySe2,sector2,emiMkt2)$(sefe(entySe2,entyFe) AND sector2emiMkt(sector2,emiMkt2)), !! take minimal non-zero price for aggregation if carrier has no quantity in the model p_FEPrice_by_FE(t,regi,entyFe)$( - (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe2,entyFe,sector2,emiMkt2) > EPS) - AND + (p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe2,entyFe,sector2,emiMkt2) > EPS) + AND ((p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe2,entyFe,sector2,emiMkt2) < p_FEPrice_by_FE(t,regi,entyFe)) OR (p_FEPrice_by_FE(t,regi,entyFe) eq 0) - )) + )) = p_FEPrice_by_SE_Sector_EmiMkt(t,regi,entySe2,entyFe,sector2,emiMkt2); ); diff --git a/core/presolve.gms b/core/presolve.gms index 7d449f74c..c7169d657 100644 --- a/core/presolve.gms +++ b/core/presolve.gms @@ -19,48 +19,48 @@ pm_emissions0(ttot,regi,enty)$( (ttot.val ge 2005) and (pm_SolNonInfes(regi) eq *LB* moved here from datainput to be updated based on the gdp-path *** calculate econometric emission data: p2 -p_emineg_econometric(regi,"co2cement_process","p2")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) le 10) = 0.3744788; -p_emineg_econometric(regi,"ch4wstl","p2")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) gt 10) = 0.5702590; -p_emineg_econometric(regi,"ch4wstl","p2")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) le 10) = 0.2057304; -p_emineg_econometric(regi,"ch4wsts","p2")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) gt 10) = 0.5702590; -p_emineg_econometric(regi,"ch4wsts","p2")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) le 10) = 0.2057304; -p_emineg_econometric(regi,"n2owaste","p2")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) gt 10) = 0.3813973; -p_emineg_econometric(regi,"n2owaste","p2")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) le 10) = 0.1686718; - -*JeS CO2 emissions from cement production. p_switch_cement describes an s-curve to provide a smooth switching from the short-term +pm_emineg_econometric(regi,"co2cement_process","p2")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) le 10) = 0.3744788; +pm_emineg_econometric(regi,"ch4wstl","p2")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) gt 10) = 0.5702590; +pm_emineg_econometric(regi,"ch4wstl","p2")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) le 10) = 0.2057304; +pm_emineg_econometric(regi,"ch4wsts","p2")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) gt 10) = 0.5702590; +pm_emineg_econometric(regi,"ch4wsts","p2")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) le 10) = 0.2057304; +pm_emineg_econometric(regi,"n2owaste","p2")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) gt 10) = 0.3813973; +pm_emineg_econometric(regi,"n2owaste","p2")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) le 10) = 0.1686718; + +*JeS CO2 emissions from cement production. pm_switch_cement describes an s-curve to provide a smooth switching from the short-term *** behavior (depending on per capita capital investments) to the long-term behavior (constant per capita emissions). -p_switch_cement(ttot,regi)$(ttot.val ge 2005) = 1 / ( 1 + exp( - (s_c_so2 / s_tau_cement) - *(1000 * p_inv_gdx(ttot,regi) / (pm_pop(ttot,regi)*pm_shPPPMER(regi)) - p_emineg_econometric(regi,"co2cement_process","p4")) +pm_switch_cement(ttot,regi)$(ttot.val ge 2005) = 1 / ( 1 + exp( - (s_c_so2 / s_tau_cement) + *(1000 * pm_inv_gdx(ttot,regi) / (pm_pop(ttot,regi)*pm_shPPPMER(regi)) - pm_emineg_econometric(regi,"co2cement_process","p4")) ) ); -display p_switch_cement; +display pm_switch_cement; *** calculate p1 -p_emineg_econometric(regi,"co2cement_process","p1")$( p_switch_cement("2005",regi) < 0.999 ) +pm_emineg_econometric(regi,"co2cement_process","p1")$( pm_switch_cement("2005",regi) < 0.999 ) = ( (p_macBase2005(regi,"co2cement_process") / pm_pop("2005",regi)) - - ( p_switch_cement("2005",regi) - * p_emineg_econometric(regi,"co2cement_process","p3") + - ( pm_switch_cement("2005",regi) + * pm_emineg_econometric(regi,"co2cement_process","p3") ) ) - / ( (1 - p_switch_cement("2005",regi)) + / ( (1 - pm_switch_cement("2005",regi)) * ( ( 1000 !! use default per-capita investments if no investment data in gdx !! (due to different region settings) - * ( (p_inv_gdx("2005",regi) / pm_pop("2005",regi))$( p_inv_gdx("2005",regi) ) - + 4$( NOT p_inv_gdx("2005",regi) ) + * ( (pm_inv_gdx("2005",regi) / pm_pop("2005",regi))$( pm_inv_gdx("2005",regi) ) + + 4$( NOT pm_inv_gdx("2005",regi) ) ) / pm_shPPPMER(regi) ) - ** p_emineg_econometric(regi,"co2cement_process","p2") + ** pm_emineg_econometric(regi,"co2cement_process","p2") ) ); -p_emineg_econometric(regi,"n2owaste","p1") = p_macBase2005(regi,"n2owaste") / (pm_pop("2005",regi) * (1000*pm_gdp("2005",regi) / (pm_pop("2005",regi)*pm_shPPPMER(regi)))**p_emineg_econometric(regi,"n2owaste","p2")); -p_emineg_econometric(regi,"ch4wstl","p1")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) le 10) = p_macBase2005(regi,"ch4wstl") / (pm_pop("2005",regi) * (1000*pm_gdp("2005",regi) / (pm_pop("2005",regi)*pm_shPPPMER(regi)))**p_emineg_econometric(regi,"ch4wstl","p2")); -p_emineg_econometric(regi,"ch4wsts","p1")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) le 10) = p_macBase2005(regi,"ch4wsts") / (pm_pop("2005",regi) * (1000*pm_gdp("2005",regi) / (pm_pop("2005",regi)*pm_shPPPMER(regi)))**p_emineg_econometric(regi,"ch4wsts","p2")); -p_emineg_econometric(regi,"ch4wstl","p1")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) gt 10) = p_macBase1990(regi,"ch4wstl") / (pm_pop("1990",regi) * (1000*pm_gdp("1990",regi) / (pm_pop("1990",regi)*pm_shPPPMER(regi)))**p_emineg_econometric(regi,"ch4wstl","p2")); -p_emineg_econometric(regi,"ch4wsts","p1")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) gt 10) = p_macBase1990(regi,"ch4wsts") / (pm_pop("1990",regi) * (1000*pm_gdp("1990",regi) / (pm_pop("1990",regi)*pm_shPPPMER(regi)))**p_emineg_econometric(regi,"ch4wsts","p2")); +pm_emineg_econometric(regi,"n2owaste","p1") = p_macBase2005(regi,"n2owaste") / (pm_pop("2005",regi) * (1000*pm_gdp("2005",regi) / (pm_pop("2005",regi)*pm_shPPPMER(regi)))**pm_emineg_econometric(regi,"n2owaste","p2")); +pm_emineg_econometric(regi,"ch4wstl","p1")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) le 10) = p_macBase2005(regi,"ch4wstl") / (pm_pop("2005",regi) * (1000*pm_gdp("2005",regi) / (pm_pop("2005",regi)*pm_shPPPMER(regi)))**pm_emineg_econometric(regi,"ch4wstl","p2")); +pm_emineg_econometric(regi,"ch4wsts","p1")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) le 10) = p_macBase2005(regi,"ch4wsts") / (pm_pop("2005",regi) * (1000*pm_gdp("2005",regi) / (pm_pop("2005",regi)*pm_shPPPMER(regi)))**pm_emineg_econometric(regi,"ch4wsts","p2")); +pm_emineg_econometric(regi,"ch4wstl","p1")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) gt 10) = p_macBase1990(regi,"ch4wstl") / (pm_pop("1990",regi) * (1000*pm_gdp("1990",regi) / (pm_pop("1990",regi)*pm_shPPPMER(regi)))**pm_emineg_econometric(regi,"ch4wstl","p2")); +pm_emineg_econometric(regi,"ch4wsts","p1")$(pm_gdp_gdx("2005",regi)/pm_pop("2005",regi) gt 10) = p_macBase1990(regi,"ch4wsts") / (pm_pop("1990",regi) * (1000*pm_gdp("1990",regi) / (pm_pop("1990",regi)*pm_shPPPMER(regi)))**pm_emineg_econometric(regi,"ch4wsts","p2")); -display p_emineg_econometric; +display pm_emineg_econometric; ***-------------------------------------- *** calculate some emission factors @@ -98,10 +98,10 @@ display p_efFossilFuelExtr; ***-------------------------------------- *** Non-energy emissions reductions (MAC) ***-------------------------------------- -*JeS CO2 emissions from cement production. p_switch_cement describes an s-curve to provide a smooth switching from the short-term +*JeS CO2 emissions from cement production. pm_switch_cement describes an s-curve to provide a smooth switching from the short-term *** behavior (depending on per capita capital investments) to the long-term behavior (constant per capita emissions). -p_switch_cement(ttot,regi)$(ttot.val ge 1990)=1/(1+exp(-(s_c_so2/s_tau_cement)*(1000*p_inv_gdx(ttot,regi)/(pm_pop(ttot,regi)*pm_shPPPMER(regi))-p_emineg_econometric(regi,"co2cement_process","p4")))); -display p_switch_cement; +pm_switch_cement(ttot,regi)$(ttot.val ge 1990)=1/(1+exp(-(s_c_so2/s_tau_cement)*(1000*pm_inv_gdx(ttot,regi)/(pm_pop(ttot,regi)*pm_shPPPMER(regi))-pm_emineg_econometric(regi,"co2cement_process","p4")))); +display pm_switch_cement; *** scale CO2 luc baselines from MAgPIE to EDGAR v4.2 2005 data in REMIND standalone runs: linear, phase out within 20 years ***$if %cm_MAgPIE_coupling% == "off" pm_macBaseMagpie(ttot,regi,"co2luc")$(ttot.val lt 2030) = pm_macBaseMagpie(ttot,regi,"co2luc") + ( (p_macBase2005(regi,"co2luc") - pm_macBaseMagpie("2005",regi,"co2luc")) * (1-(ttot.val - 2005)/20) ); @@ -165,9 +165,9 @@ display p_priceCO2,pm_priceCO2forMAC; ***-------------------------------------- *** endogenous in equations.gms *** econometric -vm_macBase.fx(ttot,regi,"ch4wsts")$(ttot.val ge 2005) = p_emineg_econometric(regi,"ch4wsts","p1") * pm_pop(ttot,regi) * (1000*pm_gdp(ttot,regi) / (pm_pop(ttot,regi)*pm_shPPPMER(regi)))**p_emineg_econometric(regi,"ch4wsts","p2"); -vm_macBase.fx(ttot,regi,"ch4wstl")$(ttot.val ge 2005) = p_emineg_econometric(regi,"ch4wstl","p1") * pm_pop(ttot,regi) * (1000*pm_gdp(ttot,regi) / (pm_pop(ttot,regi)*pm_shPPPMER(regi)))**p_emineg_econometric(regi,"ch4wstl","p2"); -vm_macBase.fx(ttot,regi,"n2owaste")$(ttot.val ge 2005) = p_emineg_econometric(regi,"n2owaste","p1") * pm_pop(ttot,regi) * (1000*pm_gdp(ttot,regi) / (pm_pop(ttot,regi)*pm_shPPPMER(regi)))**p_emineg_econometric(regi,"n2owaste","p2"); +vm_macBase.fx(ttot,regi,"ch4wsts")$(ttot.val ge 2005) = pm_emineg_econometric(regi,"ch4wsts","p1") * pm_pop(ttot,regi) * (1000*pm_gdp(ttot,regi) / (pm_pop(ttot,regi)*pm_shPPPMER(regi)))**pm_emineg_econometric(regi,"ch4wsts","p2"); +vm_macBase.fx(ttot,regi,"ch4wstl")$(ttot.val ge 2005) = pm_emineg_econometric(regi,"ch4wstl","p1") * pm_pop(ttot,regi) * (1000*pm_gdp(ttot,regi) / (pm_pop(ttot,regi)*pm_shPPPMER(regi)))**pm_emineg_econometric(regi,"ch4wstl","p2"); +vm_macBase.fx(ttot,regi,"n2owaste")$(ttot.val ge 2005) = pm_emineg_econometric(regi,"n2owaste","p1") * pm_pop(ttot,regi) * (1000*pm_gdp(ttot,regi) / (pm_pop(ttot,regi)*pm_shPPPMER(regi)))**pm_emineg_econometric(regi,"n2owaste","p2"); diff --git a/modules/37_industry/fixed_shares/presolve.gms b/modules/37_industry/fixed_shares/presolve.gms index 0b9a6239e..d188d12c2 100644 --- a/modules/37_industry/fixed_shares/presolve.gms +++ b/modules/37_industry/fixed_shares/presolve.gms @@ -8,20 +8,20 @@ vm_macBase.fx(ttot,regi,"co2cement_process")$( ttot.val ge 2005 ) = ( pm_pop(ttot,regi) - * ( (1 - p_switch_cement(ttot,regi)) - * p_emineg_econometric(regi,"co2cement_process","p1") + * ( (1 - pm_switch_cement(ttot,regi)) + * pm_emineg_econometric(regi,"co2cement_process","p1") * ( (1000 - * p_inv_gdx(ttot,regi) + * pm_inv_gdx(ttot,regi) / ( pm_pop(ttot,regi) * pm_shPPPMER(regi) ) - ) ** p_emineg_econometric(regi,"co2cement_process","p2") + ) ** pm_emineg_econometric(regi,"co2cement_process","p2") ) - + ( p_switch_cement(ttot,regi) - * p_emineg_econometric(regi,"co2cement_process","p3") + + ( pm_switch_cement(ttot,regi) + * pm_emineg_econometric(regi,"co2cement_process","p3") ) ) - )$(p_inv_gdx(ttot,regi) ne 0) + )$(pm_inv_gdx(ttot,regi) ne 0) ; vm_emiIndBase.fx(ttot,regi,"co2cement_process","cement")$( ttot.val ge 2005 ) diff --git a/modules/37_industry/subsectors/equations.gms b/modules/37_industry/subsectors/equations.gms index 60d197564..37de62fde 100644 --- a/modules/37_industry/subsectors/equations.gms +++ b/modules/37_industry/subsectors/equations.gms @@ -81,7 +81,7 @@ $endif.exogDem_scen *' energy mix, as that is what can be captured); vm_emiIndBase itself is not used for emission *' accounting, just as a CCS baseline. ***------------------------------------------------------ -q37_emiIndBase(t,regi,enty,secInd37) .. +q37_emiIndBase(t,regi,enty,secInd37)$( entyFeCC37(enty) OR sameas(enty,"co2cement_process") ) .. vm_emiIndBase(t,regi,enty,secInd37) =e= sum((secInd37_2_pf(secInd37,ppfen_industry_dyn37(in)),fe2ppfEn(entyFeCC37(enty),in)), diff --git a/modules/37_industry/subsectors/not_used.txt b/modules/37_industry/subsectors/not_used.txt index 74813248d..8c4118b09 100644 --- a/modules/37_industry/subsectors/not_used.txt +++ b/modules/37_industry/subsectors/not_used.txt @@ -11,8 +11,12 @@ pm_priceCO2forMAC,input,questionnaire p37_ResidualCementDemand,input,questionnaire p37_CementAbatementPrice,input,questionnaire pm_ttot_val,input,questionnaire +pm_emineg_econometric,input,questionnaire +pm_switch_cement,input,questionnaire +pm_shPPPMER,input,questionnaire +pm_pop,input,questionnaire +pm_inv_gdx,input,questionnaire cm_optimisticMAC,input,questionnaire -pm_macCostSwitch,input,questionnaire vm_costAddTeInv,input,questionnaire cm_indst_H2costAddH2Inv,input,questionnaire cm_indst_costDecayStart,input,questionnaire From e9367ab6cd5c891a84671a886568d426e3c48975 Mon Sep 17 00:00:00 2001 From: Jakob Duerrwaechter Date: Thu, 16 May 2024 17:39:11 +0200 Subject: [PATCH 7/9] remove subsectors/presolve, adapt doc string to goxygen, change back emineg file name --- core/datainput.gms | 2 +- core/declarations.gms | 2 +- modules/37_industry/subsectors/presolve.gms | 12 ------------ modules/37_industry/subsectors/realization.gms | 1 - 4 files changed, 2 insertions(+), 15 deletions(-) delete mode 100644 modules/37_industry/subsectors/presolve.gms diff --git a/core/datainput.gms b/core/datainput.gms index 6cdefefca..5be9281fe 100644 --- a/core/datainput.gms +++ b/core/datainput.gms @@ -1364,7 +1364,7 @@ pm_macCostSwitch(enty)=pm_macSwitch(enty); *** the co2cement_process part is only used in subsectors table pm_emineg_econometric(all_regi,all_enty,p) "parameters for ch4 and n2o emissions from waste baseline and co2 emissions from cement production" $ondelim -$include "./core/input/pm_emineg_econometric.cs3r" +$include "./core/input/p_emineg_econometric.cs3r" $offdelim ; pm_emineg_econometric(regi,"co2cement_process","p4")$(pm_emineg_econometric(regi,"co2cement_process","p4") eq 0) = sm_eps; diff --git a/core/declarations.gms b/core/declarations.gms index da619ced6..c620705d5 100644 --- a/core/declarations.gms +++ b/core/declarations.gms @@ -86,7 +86,7 @@ pm_macCostSwitch(all_enty) "switch to include mac cost p_priceCO2(tall,all_regi) "carbon price [$/tC]" pm_priceCO2forMAC(tall,all_regi,all_enty) "carbon price defined for MAC gases [$/tC]" p_priceGas(tall,all_regi) "gas price in [$/tCeq] for ch4gas MAC" -pm_CementDemandReductionCost(tall,all_regi) "cost of reducing cement demand [tn$2005]; only used in fixed_shares" +pm_CementDemandReductionCost(tall,all_regi) "cost of reducing cement demand; only used in fixed_shares [tn$2005]" p_macPE(ttot,all_regi,all_enty) "pe from MACs" pm_shPerm(tall, all_regi) "emission permit shares" pm_emicapglob(tall) "global emission cap" diff --git a/modules/37_industry/subsectors/presolve.gms b/modules/37_industry/subsectors/presolve.gms deleted file mode 100644 index 55ec013fc..000000000 --- a/modules/37_industry/subsectors/presolve.gms +++ /dev/null @@ -1,12 +0,0 @@ -*** | (C) 2006-2023 Potsdam Institute for Climate Impact Research (PIK) -*** | authors, and contributors see CITATION.cff file. This file is part -*** | of REMIND and licensed under AGPL-3.0-or-later. Under Section 7 of -*** | AGPL-3.0, you are granted additional permissions described in the -*** | REMIND License Exception, version 1.0 (see LICENSE file). -*** | Contact: remind@pik-potsdam.de -*** SOF ./modules/37_industry/subsectors/presolve.gms - - - - -*** EOF ./modules/37_industry/subsectors/presolve.gms diff --git a/modules/37_industry/subsectors/realization.gms b/modules/37_industry/subsectors/realization.gms index 0e0855cd0..bc70e2151 100644 --- a/modules/37_industry/subsectors/realization.gms +++ b/modules/37_industry/subsectors/realization.gms @@ -58,7 +58,6 @@ $Ifi "%phase%" == "datainput" $include "./modules/37_industry/subsectors/datainp $Ifi "%phase%" == "equations" $include "./modules/37_industry/subsectors/equations.gms" $Ifi "%phase%" == "preloop" $include "./modules/37_industry/subsectors/preloop.gms" $Ifi "%phase%" == "bounds" $include "./modules/37_industry/subsectors/bounds.gms" -$Ifi "%phase%" == "presolve" $include "./modules/37_industry/subsectors/presolve.gms" $Ifi "%phase%" == "postsolve" $include "./modules/37_industry/subsectors/postsolve.gms" *######################## R SECTION END (PHASES) ############################### *** EOF ./modules/37_industry/subsectors/realization.gms From 0aa091321901a976af817cc38a33ebb8e5f44357 Mon Sep 17 00:00:00 2001 From: Jakob Duerrwaechter Date: Thu, 16 May 2024 17:54:58 +0200 Subject: [PATCH 8/9] remove subsectors/presolve; adapt equation scope; adapt core/presolve to work for fixed_shares --- core/presolve.gms | 43 ++++++++++--------- modules/37_industry/subsectors/equations.gms | 2 +- modules/37_industry/subsectors/presolve.gms | 13 ------ .../37_industry/subsectors/realization.gms | 1 - 4 files changed, 24 insertions(+), 35 deletions(-) delete mode 100644 modules/37_industry/subsectors/presolve.gms diff --git a/core/presolve.gms b/core/presolve.gms index 2360bed79..1f20fc765 100644 --- a/core/presolve.gms +++ b/core/presolve.gms @@ -169,26 +169,29 @@ vm_macBase.fx(ttot,regi,"ch4wsts")$(ttot.val ge 2005) = p_emineg_econometric(reg vm_macBase.fx(ttot,regi,"ch4wstl")$(ttot.val ge 2005) = p_emineg_econometric(regi,"ch4wstl","p1") * pm_pop(ttot,regi) * (1000*pm_gdp(ttot,regi) / (pm_pop(ttot,regi)*pm_shPPPMER(regi)))**p_emineg_econometric(regi,"ch4wstl","p2"); vm_macBase.fx(ttot,regi,"n2owaste")$(ttot.val ge 2005) = p_emineg_econometric(regi,"n2owaste","p1") * pm_pop(ttot,regi) * (1000*pm_gdp(ttot,regi) / (pm_pop(ttot,regi)*pm_shPPPMER(regi)))**p_emineg_econometric(regi,"n2owaste","p2"); -!! vm_macBase.fx(ttot,regi,"co2cement_process")$( ttot.val ge 2005 ) -!! = ( pm_pop(ttot,regi) -!! * ( (1 - p_switch_cement(ttot,regi)) -!! * p_emineg_econometric(regi,"co2cement_process","p1") -!! * ( (1000 -!! * p_inv_gdx(ttot,regi) -!! / ( pm_pop(ttot,regi) -!! * pm_shPPPMER(regi) -!! ) -!! ) ** p_emineg_econometric(regi,"co2cement_process","p2") -!! ) -!! + ( p_switch_cement(ttot,regi) -!! * p_emineg_econometric(regi,"co2cement_process","p3") -!! ) -!! ) -!! )$(p_inv_gdx(ttot,regi) ne 0) -!! ; -!! -!! vm_emiIndBase.fx(ttot,regi,"co2cement_process","cement")$( ttot.val ge 2005 ) -!! = vm_macBase.lo(ttot,regi,"co2cement_process"); + +$ifthen.fixed_shares "%industry%" == "fixed_shares" +vm_macBase.fx(ttot,regi,"co2cement_process")$( ttot.val ge 2005 ) + = ( pm_pop(ttot,regi) + * ( (1 - p_switch_cement(ttot,regi)) + * p_emineg_econometric(regi,"co2cement_process","p1") + * ( (1000 + * p_inv_gdx(ttot,regi) + / ( pm_pop(ttot,regi) + * pm_shPPPMER(regi) + ) + ) ** p_emineg_econometric(regi,"co2cement_process","p2") + ) + + ( p_switch_cement(ttot,regi) + * p_emineg_econometric(regi,"co2cement_process","p3") + ) + ) + )$(p_inv_gdx(ttot,regi) ne 0) +; + +vm_emiIndBase.fx(ttot,regi,"co2cement_process","cement")$( ttot.val ge 2005 ) += vm_macBase.lo(ttot,regi,"co2cement_process"); +$endif.fixed_shares * *** Reduction of cement demand due to CO2 price markups *** * if ( NOT (cm_IndCCSscen eq 1 AND cm_CCS_cement eq 1), diff --git a/modules/37_industry/subsectors/equations.gms b/modules/37_industry/subsectors/equations.gms index 60d197564..1ee776fba 100644 --- a/modules/37_industry/subsectors/equations.gms +++ b/modules/37_industry/subsectors/equations.gms @@ -81,7 +81,7 @@ $endif.exogDem_scen *' energy mix, as that is what can be captured); vm_emiIndBase itself is not used for emission *' accounting, just as a CCS baseline. ***------------------------------------------------------ -q37_emiIndBase(t,regi,enty,secInd37) .. +q37_emiIndBase(t,regi,enty,secInd37))$( entyFeCC37(enty) OR sameas(enty,"co2cement_process") ) .. vm_emiIndBase(t,regi,enty,secInd37) =e= sum((secInd37_2_pf(secInd37,ppfen_industry_dyn37(in)),fe2ppfEn(entyFeCC37(enty),in)), diff --git a/modules/37_industry/subsectors/presolve.gms b/modules/37_industry/subsectors/presolve.gms deleted file mode 100644 index 556ebb4f1..000000000 --- a/modules/37_industry/subsectors/presolve.gms +++ /dev/null @@ -1,13 +0,0 @@ -*** | (C) 2006-2023 Potsdam Institute for Climate Impact Research (PIK) -*** | authors, and contributors see CITATION.cff file. This file is part -*** | of REMIND and licensed under AGPL-3.0-or-later. Under Section 7 of -*** | AGPL-3.0, you are granted additional permissions described in the -*** | REMIND License Exception, version 1.0 (see LICENSE file). -*** | Contact: remind@pik-potsdam.de -*** SOF ./modules/37_industry/subsectors/presolve.gms - - - -***p37_emiFac(ttot,regi,entyFe) = sum((entySe,te)$(se2fe(entySe,entyFe,te) and entySeFos(entySe)), pm_emifac(ttot,regi,entySe,entyFe,te,"co2")); - -*** EOF ./modules/37_industry/subsectors/presolve.gms diff --git a/modules/37_industry/subsectors/realization.gms b/modules/37_industry/subsectors/realization.gms index 0e0855cd0..bc70e2151 100644 --- a/modules/37_industry/subsectors/realization.gms +++ b/modules/37_industry/subsectors/realization.gms @@ -58,7 +58,6 @@ $Ifi "%phase%" == "datainput" $include "./modules/37_industry/subsectors/datainp $Ifi "%phase%" == "equations" $include "./modules/37_industry/subsectors/equations.gms" $Ifi "%phase%" == "preloop" $include "./modules/37_industry/subsectors/preloop.gms" $Ifi "%phase%" == "bounds" $include "./modules/37_industry/subsectors/bounds.gms" -$Ifi "%phase%" == "presolve" $include "./modules/37_industry/subsectors/presolve.gms" $Ifi "%phase%" == "postsolve" $include "./modules/37_industry/subsectors/postsolve.gms" *######################## R SECTION END (PHASES) ############################### *** EOF ./modules/37_industry/subsectors/realization.gms From 0162c4681cbcca59ed8675a92d5df0902fd2d996 Mon Sep 17 00:00:00 2001 From: Jakob Duerrwaechter Date: Tue, 21 May 2024 11:30:53 +0200 Subject: [PATCH 9/9] bugfix --- modules/37_industry/subsectors/equations.gms | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/37_industry/subsectors/equations.gms b/modules/37_industry/subsectors/equations.gms index 1ee776fba..37de62fde 100644 --- a/modules/37_industry/subsectors/equations.gms +++ b/modules/37_industry/subsectors/equations.gms @@ -81,7 +81,7 @@ $endif.exogDem_scen *' energy mix, as that is what can be captured); vm_emiIndBase itself is not used for emission *' accounting, just as a CCS baseline. ***------------------------------------------------------ -q37_emiIndBase(t,regi,enty,secInd37))$( entyFeCC37(enty) OR sameas(enty,"co2cement_process") ) .. +q37_emiIndBase(t,regi,enty,secInd37)$( entyFeCC37(enty) OR sameas(enty,"co2cement_process") ) .. vm_emiIndBase(t,regi,enty,secInd37) =e= sum((secInd37_2_pf(secInd37,ppfen_industry_dyn37(in)),fe2ppfEn(entyFeCC37(enty),in)),