
PMIx Usage in Mochi Data Services

Shane Snyder
ssnyder@mcs.anl.gov

Argonne National Lab

PMIx BoF
ECP Annual Meeting ‘21



Mochi background
❖ Diverse DOE scientific computing 

applications have distinct data 
management needs
➢ Simulation, data analytics, AI

❖ Mochi project mission: design 
methodologies and tools enabling rapid 
development of distributed data services 
in support of DOE science

❖ Focus is on composability: define common 
data management building blocks that 
simplify development of new services:
➢ Communication and concurrency control; 

BLOB and key-val storage; group 
membership

https://www.mcs.anl.gov/research/projects/mochi/
https://github.com/mochi-hpc 

2

https://www.mcs.anl.gov/research/projects/mochi/
https://github.com/mochi-hpc


Mochi background

❖ Mochi data services are 
dynamically deployed across sets 
of nodes, potentially separate 
from applications
➢ Bootstrapping mechanisms required 

for establishing service connectivity
❖ Services can grow/shrink, either 

as part of changing resource 
allocations or failures
➢ Fault detection and group 

membership foundational to 
distributed data services

3



Mochi Group Membership
❖ Motivation: Distributed systems frequently require a group 

membership service to reach agreement on the set of processes 
comprising the system, even in the face of process failures and 
changing resource allocations

❖ SSG (Scalable Service Groups): dynamic group membership building 
block for distributed Mochi services
➢ Service group bootstrapping

■ Who are the initial participants of the group? What are their network addresses?
➢ Fault detection and elasticity support

■ Have existing group members failed or explicitly left the group? Have new members 
joined the group?

4



PMIx usage in SSG
❖ Service group bootstrapping
➢ MPI and PMIx bootstrapping methods currently supported
➢ For PMIx, this is implemented following the model of the “business exchange 

card” use case in full-modex mode
■ Business cards contain the Mochi endpoint address for each group member, which 

other group members use to build a group communication network

❖ Fault detection and elasticity support
➢ SSG fault detection primarily provided via SWIM, a gossip-based group 

membership and fault detection protocol
➢ We have augmented SSG fault detection to additionally ingest PMIx events 

indicating failure of SSG group members
■ Short-circuit SWIM protocol fault detection algorithm in the case of known failures

5



It would be great if PMIx...
❖ ...was supported natively by the runtime environment on more 

production HPC systems (i.e., no need to deploy PRRTE)
➢ MPI is a heavy-weight dependency for Mochi services, but very convenient since it is 

always available and simple to use

❖ ...was more heavily tested and reliable on production HPC systems
➢ Our team has encountered PMIx/PRRTE bugs/regressions on numerous systems that 

make it difficult to commit to PMIx
➢ CI testing on popular HPC systems would be really helpful for ensuring reliability

❖ ...offered interfaces for discovering and managing storage resources
➢ An ability to discover storage resources and their performance characteristics could be 

very useful for selecting suitable storage resources for a Mochi service

6


