v

)
M

]
\o

PMIx Usage in Mochi Data Services

Shane Snyder

ssnyder@mcs.anl.gov
Argonne National Lab

AAAAAAAAAAAAAAAAAA

PMIx BoF
ECP Annual Meeting ‘21

Mochi background

Diverse DOE scientific computing
applications have distinct data

management needs (Particle \ machine Learning\ / Analysis of \
Simulation Ensemble Experimental Data
> Simulation, data analytics, Al S y
. % %%t \S%; Applications
MOChI projeCt mission. deSlgn (e.g. VPIC) (e.g. CANDLE) (e.g. art Framework)
methodologies and tools enabling rapid G $W $z—ay
development of distributed data services small writes & cachinglarge, bulk ingest & Data access needs

indexed queries write-once objects iterative access

in support of DOE science

Specialized interfaces

[HEPNnOS]

Mochi services

A J \ @)
(NS PO /’:
" s \ 4
”
-

data management building blocks that e
. . . 4 &~ A » I'4

Slmpllfy development Of new services: Mochi components and microservices

> Communication and concurrency control;

BLOB and key-val storage; group
membership

Composable
building blocks

https://www.mcs.anl.gov/research/projects/mochi/
https://github.com/mochi-hpc

https://www.mcs.anl.gov/research/projects/mochi/
https://github.com/mochi-hpc

Mochi background

Mochi data services are
dynamically deployed across sets
of nodes, potentially separate
from applications

> Bootstrapping mechanisms required

for establishing service connectivity
Services can grow/shrink, either

as part of changing resource

allocations or failures

> Fault detection and group
membership foundational to
distributed data services

Long term storage

App 1 App 2
Data service 1 Data service 2
| | Compute
node
Resource
allocation

Mochi Group Membership

Motivation: Distributed systems frequently require a group
membership service to reach agreement on the set of processes
comprising the system, even in the face of process failures and

changing resource allocations

SSG (Scalable Service Groups): dynamic group membership building

block for distributed Mochi services

> Service group bootstrapping
Who are the initial participants of the group? What are their network addresses?

> Fault detection and elasticity support
Have existing group members failed or explicitly left the group? Have new members

joined the group?

PMIx usage in SSG

Service group bootstrapping
> MPI and PMIx bootstrapping methods currently supported
> For PMIx, this is implemented following the model of the “business exchange

card” use case in full-modex mode

Business cards contain the Mochi endpoint address for each group member, which
other group members use to build a group communication network

Fault detection and elasticity support
> SSG fault detection primarily provided via SWIM, a gossip-based group
membership and fault detection protocol
> We have augmented SSG fault detection to additionally ingest PMIx events

iIndicating failure of SSG group members
Short-circuit SWIM protocol fault detection algorithm in the case of known failures

It would be great if PMIXx...

...was supported natively by the runtime environment on more
production HPC systems (i.e., no need to deploy PRRTE)

> MPIl is a heavy-weight dependency for Mochi services, but very convenient since it is
always available and simple to use

...was more heavily tested and reliable on production HPC systems

> Our team has encountered PMIx/PRRTE bugs/regressions on numerous systems that
make it difficult to commit to PMIx
> Cl testing on popular HPC systems would be really helpful for ensuring reliability

...offered interfaces for discovering and managing storage resources

> An ability to discover storage resources and their performance characteristics could be
very useful for selecting suitable storage resources for a Mochi service

