PMI-1, PMI-2

Ken Raffenetti
Argonne National Laboratory

Argonne &

PMI API

=Common API Functions
—Initialization and finalization
 Init, Finalize, Abort
—Information exchange
*Put, Get, Fence (aka Barrier)
—Process creation
*Spawn

;@s ENERGY C48eammentcr ey iitoriion 2 reonne
managed by UChicago Argonne, LLC. NATIONAL LABORATORY

INFORMATION EXCHANGE

"Processes need to exchange connection info
*PMI uses a Key-Value database (KVS)

=At init, processes Put contact information
—E.q., IP address and port

*Processes Get contact info when establishing
connections

=Collective Fence operation to allow
optimizations

=Some networks (BG/Q) do not require exchange
to communicate

aa

nnnnnnnnnnnnnnnnnn

PMI-1 EXTRAS

*Pre-populated keys
—PMI Process Mapping
* Processes able to calculate “nodemap”
locally

Argonne

PMI-2 FEATURES

=Attribute query functionality
=Database scope

*Thread safety

=Dynamic processes

=Fault tolerance

Argonne

PMI-2 ATTRIBUTE QUERY
FUNCTIONALITY

*Process and resource managers have
system-specific information
—Node topology, network topology, etc.

=\Without this, processes need to determine
this themselves
—Each process gets each other's contact-
iInfo to discover local processes
—QO(p?) queries

PMI-2 DATABASE SCOPE

*Previously KVS had only global scope

*PMI-2 adds node-level scoping
—E.g., keys for shared memory segments

*Allows for optimized storage and retrieval of
values

PMI-2 THREAD SAFETY

*PMI-1 is not thread safe
—All PMI calls must be serialized
* Wait for request and response
—Can affect multithreaded programs

*PMI-2 adds thread safety
—Multiple threads can call PMI functions
—One call cannot block the completion of
another

PMI-2 DYNAMIC PROCESSES

*"In PMI-1 a separate database is maintained for
each MPI_COMM_WORLD (process group)
—Queries are not allowed across databases
—Requires out-of-band exchange of databases

"PMI-2 allows cross-database queries
—Spawned or connected process groups can
now query each other’s databases
—Only process group ids need to be exchanged

AAAAAAAAAAAAAAAAAA

PMI-2 FAULT TOLERANCE

*PMI-1 provides no mechanism for
respawning a failed process
—New processes can be spawned, but they
have a unique rank and process group

=*Respawn is critical for supporting fault-
tolerance
—Not just for MPI but other programming
models

%", U.5. DEPARTMENT OF _ Argonne National Laboratory is a
(@) ENERGY (Z5matest, 10 Argonne &

nnnnnnnnnnnnnnnnnn

PMI-3 (DEAD)

e int

int
e int
e int
e int
e int
e int

PMI Init(int required, int *provided
*max keylen, int *max vallen);

PMI Initialized(int *initialized);
PMI Finalize(void);

PMI Finalized(int *finalized);

PMI Get attr(int attr, int *value);
PMI Put(const char key[], const char

value[], int scope);
' PMI Get(const char key[], char value[],

* 1nt

int
e int
e int

scope, int jobid);
PMI Fence(void);

4

PMI Abort(int flag, const char msg[]);

Argonne &

BACKUP SLIDES

S. DEPARTMENT OF Argonne National Laboratory is a
@ ENERG U.S. Department of Energy laboratory On ne
managed by UChicago Argonne, LLC.

NATIONAL LABORATORY

OAKFOREST-PACS

= Intel KNL 7250 (68 cores)
= 8,208 compute nodes
= Intel Omnipath Architecture

= Hello, World!
— 512 nodes, 64 ppn took over an hour!

= To bring down launch times, we looked at
— Hydra process manager (mpiexec)
— Usage of the Process Management Interface (PMI)

= \What is not covered in this talk
— Initialization of the fabric (fi_av_insert)

Argonne &

KEY-VALUE SPACE OPTIMIZATIONS

= EXxisting optimization
— PMI_KVS_Barrier caches key-value pairs at the node level
— PMI_KVS_Get is a node-local operation

= New optimizations
— Replaced linked-list implementation with a more scalable hash
» Constant lookup time for PMI_KVS_ Get
— Eliminated checks for duplicate keys
« Erroneous usage
« Can be re-enabled for debugging

Argonne &

15

ORIGINAL CODE

Code

/* All ranks performs followings*/
PMI_KVS_Put(rank, myaddr);
PMI_KVS_Commit();
PMI_KVS_Barrier();
for (i = 0; i < size; i++)

PMI KVS Get(i, &addrs[i]);

Data Flow

PMI Key-value store

Put Geé‘alr’>\ \i#:f///
|

| I I |
¢ Rank;D (Rank#D (Rank#.D (Rank#D
/ \

/

T~

Node #0] 1 Node #1

... Too many get operations, many of which are redundant

7%, U.S. DEPARTMENT OF _ Argonne National Labor:
() ENERGY 25t e rgonne

16

SHM OPTIMIZATION

Code

addrs[rank] = myaddr; /* address table in shared memory */

/* All ranks performs followings*/

PMI_KVS_Put(rank, myaddr);

PMI_KVS_Commit();

PMI_KVS_Barrier();

int num_cards = (size / local size);

for (i = local _rank * num_cards; i < (local_rank + 1) * num_cards; i++)
PMI_KVS Get(i, &addrs[i]);

Data Flow

PMI Key-value store

Put Ge£~TL)\\ ‘¥‘#:f///

s | | \ I I \

_Rank Ei) Rank#iZ) < Rank#é:D Rank#§:>
4 \ 4 \

Node #0] 1 Node #1

. U.S. DEPARTMENT OF _ Argonne National Laboratory is a

()] U.S. Department of Energy laboratory A

JENERGY :5SiiyedetsssRuomtid rgonne
NATIONAL LABORATORY

17

NODE ROOTS OPTIMIZATION

Code

addrs[rank] = myaddr;

if (node_root) {
PMI_KVS_Put(rank, addr[i]);
PMI_KVS_Commit();

}
PMI_KVS_Barrier();

int num_cards = num_roots / local size;

for (i = local _rank * num_cards; i < (local _rank + 1) * num_cards; i++)
PMI KVS Get(i, &addrs[i]);

MPIR Allgather(..., addrs, node roots comm);

Data Flow

PMI Key-value store

Rank #0 w Rank #2 w
||

Node #0 Node #1
Eagibomey \s 7N g Argonneo

18

EVALUATION

>00 MPI_Init
400

300

200

=
o
o

Average Time in Seconds

A & & & ——
8 16 32 64 128 256 512 1024
Number of Nodes (ppn=64)

o

—-orig -4-node-roots

* Measured on Intel Xeon Phi 7230 (Theta@ANL)
* Node-root algorithm can reduce MPI_Init time from 442 seconds to 10 seconds

U.8. DEPARTMENT OF Argonne National Laboratory is a
ENERGY U%Bemmmentcr Ererg hiorsioy Argonne
managed by UChicago Argonne, LLC.
NATIONAL LABORATORY

PMI-3 (DEAD)

eint PMI Init(int *max keylen, int
*max vallen);

e int PMI Get attr(int attr, int *value);

e int PMI Put(const char key[], const char
value[], int scope);

e int PMI Get(const char key[], char wvalue[],
int scope, int jobid);

e int PMI Fence(void);

e int PMI Abort(int flag, const char msg[]);

Argonne &

