
HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 1

HOW-TO

A quick user guide
for an End2End PoC

Authors

Stefano Rossini (Head of Italy iCSD)

Angelo Muresu (Italy devonfw Local Expert)

Jaime Diaz Gonzalez (devonfw Core Team)

INDEX

1 Introduction ... 2

1.1 What’s devonfw ... 2

1.2 devonfw Web site URL .. 3

1.3 What’s CobiGen ... 4

1.4 HOW TO install devonfw ... 5

2 Steps to create a Sample UI Angular4 Project through Cobigen ... 5

2.1 Back End (Services, DTO, DAO, DB) ... 7

2.2 Front End (Web App Angular + Ionic App) .. 22

2.2.1 Front End Web App Angular .. 22

2.2.2 Front End Mobile App .. 29

3 Adapt CobiGen_Templates: ... 37

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 2

1 Introduction

1.1 What’s devonfw

Capgemini Apps2 SBU uses the Java-based standard platform open source devonfw as an industrialized
approach to efficiently deliver CSD-projects to our customers. This platform is aimed to engagements
where the client is flexible in the use of technology or uses outdated technology,
It can offer a modern technology approach using our experience as a group. The main idea is to not create a
monolithic framework but to provide proven patterns.

devonfw provides a solution to building applications which combine best-in-class frameworks and
libraries as well as industry proven practices and code conventions. It massively speeds up development,
reduces risks and helps you to deliver better results.

The current version of the platform is oriented to develop single-page web applications based on the Java
EE programming model using the spring framework as the default implementation.

As any modern java application today, devonfw is based on a large number of technologies and standards
that build the software architecture. devonfw defines how to use these technologies in a layered
component-oriented architecture to solve all the technical aspects that make the business code work.

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 3

1.2 devonfw Web site URL

The devonfw site is available here: http://www.devonfw.com/

All the documentation about devonfw can be found under docs. There is a search bar which you

can use to quickly find documentation:

http://www.devonfw.com/
https://devonfw.com/website/pages/docs/master.html

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 4

1.3 What’s CobiGen

CobiGen is a high value asset that is used by devonfw projects to generate code across all layers of a devon-
application, including the clients. It works iteratively without leaving marks or regions in the code due to its
basic understanding of Java. Due to architecture patterns set in devonfw, the generator is able to support
generation of higher-level concepts than just - class. It is best integrated into the provided eclipse package.

Cobigen benefits summary:

1. Can generate a whole CRUD application from a single Entity class.

2. You can save the effort for creating simple CRUD use case since CobiGen generates: DAOs, DTOs,

Spring services and REST and SOAP services and even the client UI application (Angular and Ionic).

3. Agility: Boost development-speed, reduce cost, industrialize.

4. Innovation: always evolving, keep the fast pace of technology and incorporate new trends that

add value for the engagements.

5. Security: Rest assured, devonfw follows best practices to secure your applications.

6. DevOps-ready: Supports development and operations with proven solutions for continuous

integration, deployment and delivery.

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 5

1.4 HOW TO install devonfw

In order to install devonfw please make the following steps:

1. First, we will install the devonfw-ide. It is a tool that will setup your IDE within minutes. Please follow
the install guide here.

i.e: see the image below to see how the devonfw ide looks like (the folder name doesn’t have to be the
same):

Since We’re going to develop an E2E application (Mobile app + Web FE and BE services/DB) remember the

following pre-conditions:

• Java (included in devonfw-ide)

• Node and npm (https://nodejs.org/dist/v10.7.0/node-v10.7.0-x64.msi) (included in devonfw-ide)

• Capacitor (https://capacitor.ionicframework.com/docs/getting-started/)

o npm install -g @capacitor/core @capacitor/cli

2 Steps to create a Sample UI Angular4 Project through Cobigen

The HOW_TO is divided in 2 parts:

1. BE (DB + DAO + services)

2. FE (Web App Angular + Ionic App)

https://github.com/devonfw/ide/blob/master/documentation/setup.asciidoc
https://nodejs.org/dist/v10.7.0/node-v10.7.0-x64.msi

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 6

So, ready to go! We’re going to start from the BE part …

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 7

2.1 Back End (Services, DTO, DAO, DB)

1. Run the eclipse-main.bat present within the devon-ide folder

It will open eclipse for you

2. Now we are going to create a new devon4j project. Right click -> New -> Other and we search for

Maven project.

3. Click on Next and select “Devonfw” catalogue. We will pick devon4j-template-server from the list.

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 8

4. Click Next. On the next screen you will define the groupId and artifactID. You can use any name for

your project. In our case we will set grouId=com.devonfw and artifactId=poc. Note: H2

database is set by default, but it is possible to choose other options (hana, mysql, postgresql…).

Click FINISH

Now We have the following 4 projects.

BEFORE to start to create an Entity class, remember to create the tables !

5. Create a new SQL file (i.e: V0005__CreateTables_ItaPoc.sql) inside poc-core and insert the

following script:

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 9

CREATE TABLE EMPLOYEE (
 id BIGINT auto_increment, modificationCounter INTEGER NOT NULL,
 employeeid BIGINT auto_increment,
 name VARCHAR(255),
 surname VARCHAR(255),
 email VARCHAR(255),
 PRIMARY KEY (employeeid)
);

 WARNING: please note that there are 2 underscore in the name !

6. Now create another SQL file (i.e: V0006__PopulateTables-ItaPoc.sql) and add following script about

the INSERT in order to populate the table created before

 WARNING: please note that there are 2 underscore in the name !

INSERT INTO EMPLOYEE (id, modificationCounter, employeeid, name, surname,email) VALUES
(1, 1, 1, 'Stefano','Rossini','stefano.rossini@capgemini.com');
INSERT INTO EMPLOYEE (id, modificationCounter, employeeid, name, surname,email) VALUES
(2, 2, 2, 'Angelo','Muresu', 'angelo.muresu@capgemini.com');
INSERT INTO EMPLOYEE (id, modificationCounter, employeeid, name, surname,email) VALUES
(3, 3, 3, 'Jaime','Gonzalez', 'jaime.diaz-gonzalez@capgemini.com');

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 10

NOW you can create the Entity class 😉

7. First of all create a package “employeemanagement.dataacess.api” under the folder “poc-core”.

Note: It is important to follow this naming convention for CobiGen to work properly.

8. Now under this new package created

create a class (Hibernate entity !)

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 11

Now you can add:

• the TABLE NAME

• the attributes (i.e: name,surname,email etc…)

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Column;

@Entity
@javax.persistence.Table(name = "EMPLOYEE")
public class EmployeeEntity {

 @Column(name = "EMPLOYEEID")
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long employeeId;

 @Column(name = "NAME")
 private String name;

 @Column(name = "SURNAME")
 private String surname;

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 12

 @Column(name = "EMAIL")
 private String email;

}

and then generate getters and setters for all attributes …

9. Once Getter and Setter are done, we can now use CobiGen (do it if u need to use code generator !)

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 13

Right click on Entity (EmployeeEntity.java file) and click on Generate Cobigen.

It will ask you to download the templates, click on update:

It will automatically download the latest version of CobiGen_Templates. After that, it will show you the next

window:

Attention: If you want to adapt the CobiGen_Templates, (normally this is not necessary), you will find at

the end of this document a tutorial on how to import them and adapt them!

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 14

10. Click on all the option selected as below:

11. Click on Next

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 15

12. Click on finish. Below Screen would be seen. Click on continue

The entire BE layer structure having CRUD operation methods
will be auto generated.

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 16

Some classes will be generated on the api part (poc-api), normally it will be interfaces, as shown below:

Some other classes will be generated on the core part (poc-core), normally it will be implementations as

shown below:

AFTER CobiGen, you will see that the entity previously developed as POJO now has “changed” since it

inherit from a devonfw base class: ApplicationPersistenceEntity

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 17

From:

public class EmployeeEntity {

to:

public class EmployeeEntity extends ApplicationPersistenceEntity implements Employee {

BEFORE to generate the FE, please start the Tomcat server to check that BE Layer

has been generated properly.

To start a server you just have to right click on “SpringBootApp.java” -> run as -> Spring Boot app

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 18

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 19

BE DONE 😊

Last but not least: We make a quick REST services test !

See in the application.properties the TCP Port and the PATH

Now compose the Rest service URL:

http://<server>/<app>/services/rest/<rest service class path>/<service method path>

• <server> refers to server with port no. (ie: localhost:8081)

• <app> is in the application.propeeties (empty in our case, see above)

• <rest service class path> refers to

EmployeemanagementRestService: (i.e: /employeemanagement/v1)

• <service method path>/employee/{id} (i.e: for getEmployee method)

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 20

URL of getEmployee for this example is:

http://localhost:8081/services/rest/employeemanagement/v1/employee/search (for all employees)
http://localhost:8081/services/rest/employeemanagement/v1/employee/1 (for the specific employee)

Now download Postman tool [https://www.getpostman.com/apps]

Once done, you have to create a POST Request for the LOGIN and insert in the body the JSON

containing the username and password “waiter”

Once done with success (Status: 200 OK) …

… We create a NEW GET Request in order to get one employee.

http://localhost:8081/services/rest/employeemanagement/v1/employee/search
http://localhost:8081/services/rest/employeemanagement/v1/employee/1

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 21

Now you can click

Now you ‘ve to check that response has got Status: 200 OK and to see the below Employee

Now that We have successfully tested the BE is time to go to create the FE! We will also enable

cors on the BE for the FEs to work (explained later).

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 22

2.2 Front End (Web App Angular + Ionic App)

Let’s start now with FE with angular Web and then Ionic app.

2.2.1 Front End Web App Angular

1. Now, for the Angular structure to be auto-generated, first we need a base application where to

generate our code. Go to https://github.com/devonfw/devon4ng and you will see three different

git submodules: devon4ng-application-template, devon4ng-ionic-application-template and

devon4ng-ngrx-template. We will not use in this tutorial ngrx (state management), but CobiGen is

also compatible with it, feel free to test in another time.

2. Click on devon4ng-application-template and download as a zip the repository:

3. Extract the “devon4ng-application-template-….” zip file contents to the location

(Path location \Devon-ide\workspaces\main) and rename it to “devon4ng-application-template”.

Note: It is very important to use the same name for CobiGen to know where to generate the code.

https://github.com/devonfw/devon4ng

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 23

Note: As you can see, the front-end is next to our devon4j project (poc).

4. Once done, right click on the EmployeeEto.java (that is the Entity transport object) file present

under the package “com.devonfw.poc.employeemanagement.logic.api.to”

5. Click on the selected options as seen in the screenshot:

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 24

6. Click on Next

7. Click on Finish

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 25

8. The entire ANGULAR structure has been auto generated.

The entire Angular FE layer structure having CRUD operation
methods will be auto generated.

9. IMPORTANT now you have to add in the app-routing.module.ts file the next content, as a child

of HomeComponent, in order to enable the route of the new generated component

 ,{

 path: 'employee',

 component: EmployeeGridComponent,

 canActivate: [AuthGuard],

 },

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 26

Following picture explain where to place the above content:

10. Now go to “workspaces\main\devon4ng-application-template” and right click, select “Open

devonfw CMD shell here”. It will open a console. Execute “npm install” command which would

download all the required libraries and node modules folder would be generated.

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 27

11. Check the file environment.ts if the server path is correct. (for production you will have to change

also the environment.prod.ts file)

In order to do that it’s important to look at the application.properties to see the values as PATH,

TCP port etc …

For example in this case the URL should be since the context path is empty the server URLS should be like:

export const environment = {

 production: false,

 restPathRoot: 'http://localhost:8081/',

 restServiceRoot: 'http://localhost:8081/services/rest/',

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 28

 security: ‘csrf’

};

Warning: REMEMBER to set security filed to csrf

12. Now we need to enable cors on the back-end, in order to allow some cross-origin requests. Go to

poc-core/src/main/resources/application.properties and set security.cors.enabled=true

13. Now run the “ng serve -o” command to run the Angular Application.

14. If the command execution is successful, the below screen will appear and it would be

automatically redirected to the url: http://localhost:4200/login

http://localhost:4200/login

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 29

FE WebApp DONE 😊

2.2.2 Front End Mobile App

1. Now, for the Ionic structure to be auto-generated, go to https://github.com/devonfw/devon4ng.

Click “devon4ng-ionic-application-template” project and download it as a zip (just follow the same

process as we did previously with Angular). Remember: the folder name should be “devon4ng-

ionic-application-template“ and it should be located next to “poc”.

2. Once done, Right click on the EmployeeEto.java as you already did before in order to use CobiGen.

https://github.com/devonfw/devon4ng

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 30

3. Click on the selected options as seen in the screenshot:

4. Click on Next.

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 31

5. Click on Finish

6. The entire ionic structure will be auto generated.

The entire Ionic APP structure would be auto generated having
CRUD operation methods.

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 32

7. Change the server url (with correct serve url) in environment.ts, environment.prod.ts and

environment.android.ts files (i.e: main\devon4ng-ionic-application-template\src\environments\).

The angular.json file inside the project has already a build configuration for android.

8. Now go to “workspaces\main\devon4ng-ionic-application-template” and right click, select “Open

devonfw CMD shell here”. It will open a console.

9. If you have Windows10
npm install @ionic/app-scripts@latest --save-dev

10. Run “npm install”.

11. Execute “ionic serve”.

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 33

12. Once the execution is successful

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 34

FE Mobile App DONE 😊

So: well done !

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 35

Starting from an Entity class you’ve successfully generated the Back-End layer (REST, SOAP, DTO, Spring

services, Hibernate DAO), the Angular Web App and the Ionic mobile App!

2.2.2.1 Generate APK

Since We’re going to create apk remember the following pre-conditions:

• Gradle (https://gradle.org/install/)

• Android Studio (https://developer.android.com/studio)

• Android sdk (https://developer.android.com/studio/#command-tools)

• Capacitor (https://capacitor.ionicframework.com/docs/getting-started/)

1. Now, open cmd and type the path where your “devon4ng-ionic-application-template” project is

present.

2. Run the following commands:

a. npx cap init

b. ionic build --configuration=android

c. npx cap add android

d. npx cap copy

e. npx cap open android

3. Build the APK using Android studio.

https://gradle.org/install/
https://developer.android.com/studio
https://developer.android.com/studio/#command-tools
https://capacitor.ionicframework.com/docs/getting-started/

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 36

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 37

You can find your apk file in

/devon4ng-ionic-application-template/android/app/build/outputs/apk/debug

3 Adapt CobiGen_Templates:

After following this tutorial, you will have the CobiGen_Templates downloaded on your local machine. To

import these templates you need to do the following:

Right click in any part of the package explorer, then click on CobiGen -> Adapt templates

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 38

Click Ok:

Now the CobiGen_Templates project will be automatically imported into your workspace, as shown on the

image below:

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 39

Now you just need to change the Java version of the project to JRE 1.8. Right click on the JRE system library,

and then on Properties:

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 40

Now change the version to Java 1.8

Now you have successfully imported the CobiGen templates. If you want to edit them, you will find them in

the folder src/main/templates. For instance, the Java templates are located here:

HOW-TO-devonfw-ide-CobiGen-PoC-E2E_v3.2.docx Page 41

Now you can adapt the templates as much as you want. Documentation about this can be found on:

https://github.com/devonfw/tools-cobigen/wiki/Guide-to-the-Reader

https://github.com/devonfw/tools-cobigen/wiki/Guide-to-the-Reader

