diff --git a/biolink-model.yaml b/biolink-model.yaml index 72512a462..ff3fb65e2 100644 --- a/biolink-model.yaml +++ b/biolink-model.yaml @@ -213,27 +213,32 @@ types: - Should be implemented as a stronger type iri type: + uri: xsd:string typeof: uriorcurie description: >- An IRI label type: + uri: xsd:string typeof: string description: >- A string that provides a human-readable name for an entity predicate type: + uri: xsd:string typeof: uriorcurie description: >- A CURIE from the biolink related_to hierarchy. For example, biolink:related_to, biolink:causes, biolink:treats. narrative text: + uri: xsd:string typeof: string description: >- A string that provides a human-readable description of something symbol type: + uri: xsd:string typeof: string frequency value: @@ -258,9 +263,11 @@ types: - qud:Unit time type: + uri: xsd:string typeof: time biological sequence: + uri: xsd:string typeof: string ## ------------ @@ -1161,12 +1168,26 @@ slots: - SNOMED:has_route_of_administration + response context qualifier: + description: >- + a biological response (general, study, cohort, etc.) with a specific set of characteristics to constrain + an association. + is_a: context qualifier + range: ResponseEnum + + response target context qualifier: + description: >- + a biological response target (a patient, a cohort, a model system, a cell line, a sample of biological material, + etc.) + is_a: context qualifier + range: ResponseTargetEnum + population context qualifier: description: >- a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association. is_a: qualifier - range: population of individual organisms + range: population of individual organisms # TODO: harmonize with 'response target context qualifier' temporal context qualifier: description: >- @@ -2577,8 +2598,38 @@ slots: another existing entity. inverse: affects - associated with sensitivity to: + associated with response to: + is_a: associated with + description: >- + A statistical association used to indicate that the object of a statement using this predicate + induces a response of some kind in the subject entity. Intentionally broad in definition, this predicate + should be used with qualifiers to narrow the type of response (E.g. whether the response is therapeutic, + phenotypic, detrimental, resistant, etc. is captured in context, direction, and + aspect qualifiers). + annotations: + canonical_predicate: true + comments: >- + subject: NCBIGene:2064 # HER2 + subject_aspect: Amplification + predicate: associated with response to + object: CHEBI:10035 # Trastuzumab + response_type_qualifier: therapeutic_sensitivity + response_direction_qualifer: increased + response_target_qualifier: human patient + disease_context_qualifier: MONDO:0007254 # breast cancer + + subject: MONDO:0007254 + predicate: associated with response to + qualified_predicate: associated with + object: CHEBI:10035 # Trastuzumab + response_context_qualifier: therapeutic_sensitivity + + response associated with: is_a: associated with + inverse: associated with response to + + associated with sensitivity to: + is_a: associated with response to description: >- A relation that holds between a named thing and a chemical that specifies that the change in the named @@ -2599,7 +2650,7 @@ slots: domain: chemical entity associated with resistance to: - is_a: associated with + is_a: associated with response to description: >- A relation that holds between a named thing and a chemical that specifies that the change in the named @@ -9359,6 +9410,30 @@ classes: - owl:Axiom + disease associated with response to chemical entity association: + description: >- + A statistical association between a disease and a chemical entity where the + chemical entity has a therapeutic or adverse effect on the disease progression, symptoms or outcomes + in a patient, cell line, or any model system. + is_a: association + slots: + - response context qualifier + - response target context qualifier + defining_slots: + - subject + - predicate + - object + - response context qualifier + - response target context qualifier + slot_usage: + subject: + range: disease + object: + range: chemical entity + predicate: + subproperty_of: associated with response to + + chemical entity assesses named thing association: is_a: association slot_usage: @@ -11536,6 +11611,34 @@ classes: enums: + ResponseEnum: + description: >- + A response to a treatment or intervention + permissible_values: + therapeutic_response: + description: >- + A positive response to a treatment or intervention + negative: + description: >- + A negative response to a treatment or intervention + + ResponseTargetEnum: + description: >- + The target of a treatment or intervention + permissible_values: + cohort: + description: >- + A group of individuals that are the target of a treatment or intervention + cell line: + description: >- + A cell line that is the target of a treatment or intervention + individual: + description: >- + An individual that is the target of a treatment or intervention + sample: + description: >- + A biological materialsample that is the target of a treatment or intervention + ApprovalStatusEnum: description: >- permissible_values: diff --git a/poetry.lock b/poetry.lock index 3634f891a..9e0e6a9d8 100644 --- a/poetry.lock +++ b/poetry.lock @@ -2,13 +2,13 @@ [[package]] name = "annotated-types" -version = "0.6.0" +version = "0.7.0" description = "Reusable constraint types to use with typing.Annotated" optional = false python-versions = ">=3.8" files = [ - {file = "annotated_types-0.6.0-py3-none-any.whl", hash = "sha256:0641064de18ba7a25dee8f96403ebc39113d0cb953a01429249d5c7564666a43"}, - {file = "annotated_types-0.6.0.tar.gz", hash = "sha256:563339e807e53ffd9c267e99fc6d9ea23eb8443c08f112651963e24e22f84a5d"}, + {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, + {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] [[package]] @@ -42,36 +42,34 @@ test = ["dateparser (==1.*)", "pre-commit", "pytest", "pytest-cov", "pytest-mock [[package]] name = "attrs" -version = "23.1.0" +version = "24.2.0" description = "Classes Without Boilerplate" optional = false python-versions = ">=3.7" files = [ - {file = "attrs-23.1.0-py3-none-any.whl", hash = "sha256:1f28b4522cdc2fb4256ac1a020c78acf9cba2c6b461ccd2c126f3aa8e8335d04"}, - {file = "attrs-23.1.0.tar.gz", hash = "sha256:6279836d581513a26f1bf235f9acd333bc9115683f14f7e8fae46c98fc50e015"}, + {file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"}, + {file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"}, ] [package.extras] -cov = ["attrs[tests]", "coverage[toml] (>=5.3)"] -dev = ["attrs[docs,tests]", "pre-commit"] -docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope-interface"] -tests = ["attrs[tests-no-zope]", "zope-interface"] -tests-no-zope = ["cloudpickle", "hypothesis", "mypy (>=1.1.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] [[package]] name = "babel" -version = "2.13.1" +version = "2.16.0" description = "Internationalization utilities" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "Babel-2.13.1-py3-none-any.whl", hash = "sha256:7077a4984b02b6727ac10f1f7294484f737443d7e2e66c5e4380e41a3ae0b4ed"}, - {file = "Babel-2.13.1.tar.gz", hash = "sha256:33e0952d7dd6374af8dbf6768cc4ddf3ccfefc244f9986d4074704f2fbd18900"}, + {file = "babel-2.16.0-py3-none-any.whl", hash = "sha256:368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b"}, + {file = "babel-2.16.0.tar.gz", hash = "sha256:d1f3554ca26605fe173f3de0c65f750f5a42f924499bf134de6423582298e316"}, ] -[package.dependencies] -setuptools = {version = "*", markers = "python_version >= \"3.12\""} - [package.extras] dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"] @@ -98,13 +96,13 @@ lxml = ["lxml"] [[package]] name = "bioregistry" -version = "0.10.89" +version = "0.11.17" description = "Integrated registry of biological databases and nomenclatures" optional = false python-versions = ">=3.8" files = [ - {file = "bioregistry-0.10.89-py3-none-any.whl", hash = "sha256:f21e6fcdb9e70368fe031baeff061a81e26bf58d88b017d5900fe4bf15fef115"}, - {file = "bioregistry-0.10.89.tar.gz", hash = "sha256:ca251b91b6ba05b585bfc1505b09221ef7ff4ab9467e3b54957b859a67f51e39"}, + {file = "bioregistry-0.11.17-py3-none-any.whl", hash = "sha256:90850e681c4f20cb7ab9895b7907d0694a475a35032f5fe62130a5060d7722ef"}, + {file = "bioregistry-0.11.17.tar.gz", hash = "sha256:929360a5071efa85674817981de44d071776eea632645c0f39d32d77b4cf2eae"}, ] [package.dependencies] @@ -117,9 +115,9 @@ requests = "*" tqdm = "*" [package.extras] -align = ["beautifulsoup4", "class-resolver", "defusedxml", "fairsharing-client (>=0.1.0)", "pyyaml", "tabulate"] +align = ["beautifulsoup4", "class-resolver", "defusedxml", "fairsharing-client (>=0.1.0)", "pandas", "pyyaml", "tabulate"] charts = ["jinja2", "matplotlib", "matplotlib-venn", "pandas", "seaborn"] -docs = ["autodoc-pydantic", "sphinx", "sphinx-automodapi", "sphinx-click", "sphinx-rtd-theme"] +docs = ["autodoc-pydantic", "sphinx (<7.3)", "sphinx-automodapi", "sphinx-click", "sphinx-rtd-theme"] export = ["ndex2", "pyyaml", "rdflib", "rdflib-jsonld"] gha = ["more-itertools"] health = ["click-default-group", "jinja2", "pandas", "pyyaml", "tabulate"] @@ -128,24 +126,24 @@ web = ["bootstrap-flask (<=2.0.0)", "curies[fastapi]", "fastapi", "flask (<2.2.4 [[package]] name = "cachetools" -version = "5.3.2" +version = "5.5.0" description = "Extensible memoizing collections and decorators" optional = false python-versions = ">=3.7" files = [ - {file = "cachetools-5.3.2-py3-none-any.whl", hash = "sha256:861f35a13a451f94e301ce2bec7cac63e881232ccce7ed67fab9b5df4d3beaa1"}, - {file = "cachetools-5.3.2.tar.gz", hash = "sha256:086ee420196f7b2ab9ca2db2520aca326318b68fe5ba8bc4d49cca91add450f2"}, + {file = "cachetools-5.5.0-py3-none-any.whl", hash = "sha256:02134e8439cdc2ffb62023ce1debca2944c3f289d66bb17ead3ab3dede74b292"}, + {file = "cachetools-5.5.0.tar.gz", hash = "sha256:2cc24fb4cbe39633fb7badd9db9ca6295d766d9c2995f245725a46715d050f2a"}, ] [[package]] name = "certifi" -version = "2024.7.4" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, - {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] @@ -287,13 +285,13 @@ colorama = {version = "*", markers = "platform_system == \"Windows\""} [[package]] name = "codespell" -version = "2.2.6" +version = "2.3.0" description = "Codespell" optional = false python-versions = ">=3.8" files = [ - {file = "codespell-2.2.6-py3-none-any.whl", hash = "sha256:9ee9a3e5df0990604013ac2a9f22fa8e57669c827124a2e961fe8a1da4cacc07"}, - {file = "codespell-2.2.6.tar.gz", hash = "sha256:a8c65d8eb3faa03deabab6b3bbe798bea72e1799c7e9e955d57eca4096abcff9"}, + {file = "codespell-2.3.0-py3-none-any.whl", hash = "sha256:a9c7cef2501c9cfede2110fd6d4e5e62296920efe9abfb84648df866e47f58d1"}, + {file = "codespell-2.3.0.tar.gz", hash = "sha256:360c7d10f75e65f67bad720af7007e1060a5d395670ec11a7ed1fed9dd17471f"}, ] [package.extras] @@ -315,13 +313,13 @@ files = [ [[package]] name = "curies" -version = "0.7.4" +version = "0.7.10" description = "Idiomatic conversion between URIs and compact URIs (CURIEs)." optional = false python-versions = ">=3.8" files = [ - {file = "curies-0.7.4-py3-none-any.whl", hash = "sha256:478f1818345988933d8bc6060f80a985401331f856ff8cf9bd98fa00d178ad39"}, - {file = "curies-0.7.4.tar.gz", hash = "sha256:d3aaf16644b26ac2605ff83c565ec7df0ba0b5f7425516047666e609ec5fb718"}, + {file = "curies-0.7.10-py3-none-any.whl", hash = "sha256:ad80f420dd76b6f3e921a245370ff6ab7473c48c29c17254970c03cd2e58af5f"}, + {file = "curies-0.7.10.tar.gz", hash = "sha256:98a7ceb94710fab3a02727a7f85ba0719dd22be5fc8b5f2ad1d7d4cfc47d64ce"}, ] [package.dependencies] @@ -366,13 +364,12 @@ dev = ["PyTest", "PyTest-Cov", "bump2version (<1)", "sphinx (<2)", "tox"] [[package]] name = "editorconfig" -version = "0.12.3" +version = "0.12.4" description = "EditorConfig File Locator and Interpreter for Python" optional = false python-versions = "*" files = [ - {file = "EditorConfig-0.12.3-py3-none-any.whl", hash = "sha256:6b0851425aa875b08b16789ee0eeadbd4ab59666e9ebe728e526314c4a2e52c1"}, - {file = "EditorConfig-0.12.3.tar.gz", hash = "sha256:57f8ce78afcba15c8b18d46b5170848c88d56fd38f05c2ec60dbbfcb8996e89e"}, + {file = "EditorConfig-0.12.4.tar.gz", hash = "sha256:24857fa1793917dd9ccf0c7810a07e05404ce9b823521c7dce22a4fb5d125f80"}, ] [[package]] @@ -388,13 +385,13 @@ files = [ [[package]] name = "exceptiongroup" -version = "1.2.0" +version = "1.2.2" description = "Backport of PEP 654 (exception groups)" optional = false python-versions = ">=3.7" files = [ - {file = "exceptiongroup-1.2.0-py3-none-any.whl", hash = "sha256:4bfd3996ac73b41e9b9628b04e079f193850720ea5945fc96a08633c66912f14"}, - {file = "exceptiongroup-1.2.0.tar.gz", hash = "sha256:91f5c769735f051a4290d52edd0858999b57e5876e9f85937691bd4c9fa3ed68"}, + {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, + {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, ] [package.extras] @@ -444,19 +441,20 @@ beautifulsoup4 = "*" [[package]] name = "google-api-core" -version = "2.14.0" +version = "2.20.0" description = "Google API client core library" optional = false python-versions = ">=3.7" files = [ - {file = "google-api-core-2.14.0.tar.gz", hash = "sha256:5368a4502b793d9bbf812a5912e13e4e69f9bd87f6efb508460c43f5bbd1ce41"}, - {file = "google_api_core-2.14.0-py3-none-any.whl", hash = "sha256:de2fb50ed34d47ddbb2bd2dcf680ee8fead46279f4ed6b16de362aca23a18952"}, + {file = "google_api_core-2.20.0-py3-none-any.whl", hash = "sha256:ef0591ef03c30bb83f79b3d0575c3f31219001fc9c5cf37024d08310aeffed8a"}, + {file = "google_api_core-2.20.0.tar.gz", hash = "sha256:f74dff1889ba291a4b76c5079df0711810e2d9da81abfdc99957bc961c1eb28f"}, ] [package.dependencies] google-auth = ">=2.14.1,<3.0.dev0" googleapis-common-protos = ">=1.56.2,<2.0.dev0" -protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0.dev0" +proto-plus = ">=1.22.3,<2.0.0dev" +protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<6.0.0.dev0" requests = ">=2.18.0,<3.0.0.dev0" [package.extras] @@ -466,31 +464,31 @@ grpcio-gcp = ["grpcio-gcp (>=0.2.2,<1.0.dev0)"] [[package]] name = "google-api-python-client" -version = "2.109.0" +version = "2.146.0" description = "Google API Client Library for Python" optional = false python-versions = ">=3.7" files = [ - {file = "google-api-python-client-2.109.0.tar.gz", hash = "sha256:d06390c25477c361d52639fe00ef912c3fab8dafc7fbf29580c1144e92523a79"}, - {file = "google_api_python_client-2.109.0-py2.py3-none-any.whl", hash = "sha256:72e7d46cc70908d808e29f16d983b441783fe56b694cec132db9af9fb991daa2"}, + {file = "google_api_python_client-2.146.0-py2.py3-none-any.whl", hash = "sha256:b1e62c9889c5ef6022f11d30d7ef23dc55100300f0e8aaf8aa09e8e92540acad"}, + {file = "google_api_python_client-2.146.0.tar.gz", hash = "sha256:41f671be10fa077ee5143ee9f0903c14006d39dc644564f4e044ae96b380bf68"}, ] [package.dependencies] google-api-core = ">=1.31.5,<2.0.dev0 || >2.3.0,<3.0.0.dev0" -google-auth = ">=1.19.0,<3.0.0.dev0" -google-auth-httplib2 = ">=0.1.0" -httplib2 = ">=0.15.0,<1.dev0" +google-auth = ">=1.32.0,<2.24.0 || >2.24.0,<2.25.0 || >2.25.0,<3.0.0.dev0" +google-auth-httplib2 = ">=0.2.0,<1.0.0" +httplib2 = ">=0.19.0,<1.dev0" uritemplate = ">=3.0.1,<5" [[package]] name = "google-auth" -version = "2.23.4" +version = "2.35.0" description = "Google Authentication Library" optional = false python-versions = ">=3.7" files = [ - {file = "google-auth-2.23.4.tar.gz", hash = "sha256:79905d6b1652187def79d491d6e23d0cbb3a21d3c7ba0dbaa9c8a01906b13ff3"}, - {file = "google_auth-2.23.4-py2.py3-none-any.whl", hash = "sha256:d4bbc92fe4b8bfd2f3e8d88e5ba7085935da208ee38a134fc280e7ce682a05f2"}, + {file = "google_auth-2.35.0-py2.py3-none-any.whl", hash = "sha256:25df55f327ef021de8be50bad0dfd4a916ad0de96da86cd05661c9297723ad3f"}, + {file = "google_auth-2.35.0.tar.gz", hash = "sha256:f4c64ed4e01e8e8b646ef34c018f8bf3338df0c8e37d8b3bba40e7f574a3278a"}, ] [package.dependencies] @@ -500,20 +498,20 @@ rsa = ">=3.1.4,<5" [package.extras] aiohttp = ["aiohttp (>=3.6.2,<4.0.0.dev0)", "requests (>=2.20.0,<3.0.0.dev0)"] -enterprise-cert = ["cryptography (==36.0.2)", "pyopenssl (==22.0.0)"] +enterprise-cert = ["cryptography", "pyopenssl"] pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] reauth = ["pyu2f (>=0.1.5)"] requests = ["requests (>=2.20.0,<3.0.0.dev0)"] [[package]] name = "google-auth-httplib2" -version = "0.1.1" +version = "0.2.0" description = "Google Authentication Library: httplib2 transport" optional = false python-versions = "*" files = [ - {file = "google-auth-httplib2-0.1.1.tar.gz", hash = "sha256:c64bc555fdc6dd788ea62ecf7bccffcf497bf77244887a3f3d7a5a02f8e3fc29"}, - {file = "google_auth_httplib2-0.1.1-py2.py3-none-any.whl", hash = "sha256:42c50900b8e4dcdf8222364d1f0efe32b8421fb6ed72f2613f12f75cc933478c"}, + {file = "google-auth-httplib2-0.2.0.tar.gz", hash = "sha256:38aa7badf48f974f1eb9861794e9c0cb2a0511a4ec0679b1f886d108f5640e05"}, + {file = "google_auth_httplib2-0.2.0-py2.py3-none-any.whl", hash = "sha256:b65a0a2123300dd71281a7bf6e64d65a0759287df52729bdd1ae2e47dc311a3d"}, ] [package.dependencies] @@ -522,13 +520,13 @@ httplib2 = ">=0.19.0" [[package]] name = "google-auth-oauthlib" -version = "1.1.0" +version = "1.2.1" description = "Google Authentication Library" optional = false python-versions = ">=3.6" files = [ - {file = "google-auth-oauthlib-1.1.0.tar.gz", hash = "sha256:83ea8c3b0881e453790baff4448e8a6112ac8778d1de9da0b68010b843937afb"}, - {file = "google_auth_oauthlib-1.1.0-py2.py3-none-any.whl", hash = "sha256:089c6e587d36f4803ac7e0720c045c6a8b1fd1790088b8424975b90d0ee61c12"}, + {file = "google_auth_oauthlib-1.2.1-py2.py3-none-any.whl", hash = "sha256:2d58a27262d55aa1b87678c3ba7142a080098cbc2024f903c62355deb235d91f"}, + {file = "google_auth_oauthlib-1.2.1.tar.gz", hash = "sha256:afd0cad092a2eaa53cd8e8298557d6de1034c6cb4a740500b5357b648af97263"}, ] [package.dependencies] @@ -540,116 +538,132 @@ tool = ["click (>=6.0.0)"] [[package]] name = "googleapis-common-protos" -version = "1.61.0" +version = "1.65.0" description = "Common protobufs used in Google APIs" optional = false python-versions = ">=3.7" files = [ - {file = "googleapis-common-protos-1.61.0.tar.gz", hash = "sha256:8a64866a97f6304a7179873a465d6eee97b7a24ec6cfd78e0f575e96b821240b"}, - {file = "googleapis_common_protos-1.61.0-py2.py3-none-any.whl", hash = "sha256:22f1915393bb3245343f6efe87f6fe868532efc12aa26b391b15132e1279f1c0"}, + {file = "googleapis_common_protos-1.65.0-py2.py3-none-any.whl", hash = "sha256:2972e6c496f435b92590fd54045060867f3fe9be2c82ab148fc8885035479a63"}, + {file = "googleapis_common_protos-1.65.0.tar.gz", hash = "sha256:334a29d07cddc3aa01dee4988f9afd9b2916ee2ff49d6b757155dc0d197852c0"}, ] [package.dependencies] -protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0.dev0" +protobuf = ">=3.20.2,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<6.0.0.dev0" [package.extras] grpc = ["grpcio (>=1.44.0,<2.0.0.dev0)"] [[package]] name = "graphviz" -version = "0.20.1" +version = "0.20.3" description = "Simple Python interface for Graphviz" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "graphviz-0.20.1-py3-none-any.whl", hash = "sha256:587c58a223b51611c0cf461132da386edd896a029524ca61a1462b880bf97977"}, - {file = "graphviz-0.20.1.zip", hash = "sha256:8c58f14adaa3b947daf26c19bc1e98c4e0702cdc31cf99153e6f06904d492bf8"}, + {file = "graphviz-0.20.3-py3-none-any.whl", hash = "sha256:81f848f2904515d8cd359cc611faba817598d2feaac4027b266aa3eda7b3dde5"}, + {file = "graphviz-0.20.3.zip", hash = "sha256:09d6bc81e6a9fa392e7ba52135a9d49f1ed62526f96499325930e87ca1b5925d"}, ] [package.extras] dev = ["flake8", "pep8-naming", "tox (>=3)", "twine", "wheel"] -docs = ["sphinx (>=5)", "sphinx-autodoc-typehints", "sphinx-rtd-theme"] -test = ["coverage", "mock (>=4)", "pytest (>=7)", "pytest-cov", "pytest-mock (>=3)"] +docs = ["sphinx (>=5,<7)", "sphinx-autodoc-typehints", "sphinx-rtd-theme"] +test = ["coverage", "pytest (>=7,<8.1)", "pytest-cov", "pytest-mock (>=3)"] [[package]] name = "greenlet" -version = "3.0.1" +version = "3.1.1" description = "Lightweight in-process concurrent programming" optional = false python-versions = ">=3.7" files = [ - {file = "greenlet-3.0.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:f89e21afe925fcfa655965ca8ea10f24773a1791400989ff32f467badfe4a064"}, - {file = "greenlet-3.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28e89e232c7593d33cac35425b58950789962011cc274aa43ef8865f2e11f46d"}, - {file = "greenlet-3.0.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8ba29306c5de7717b5761b9ea74f9c72b9e2b834e24aa984da99cbfc70157fd"}, - {file = "greenlet-3.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19bbdf1cce0346ef7341705d71e2ecf6f41a35c311137f29b8a2dc2341374565"}, - {file = "greenlet-3.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:599daf06ea59bfedbec564b1692b0166a0045f32b6f0933b0dd4df59a854caf2"}, - {file = "greenlet-3.0.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b641161c302efbb860ae6b081f406839a8b7d5573f20a455539823802c655f63"}, - {file = "greenlet-3.0.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d57e20ba591727da0c230ab2c3f200ac9d6d333860d85348816e1dca4cc4792e"}, - {file = "greenlet-3.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:5805e71e5b570d490938d55552f5a9e10f477c19400c38bf1d5190d760691846"}, - {file = "greenlet-3.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:52e93b28db27ae7d208748f45d2db8a7b6a380e0d703f099c949d0f0d80b70e9"}, - {file = "greenlet-3.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f7bfb769f7efa0eefcd039dd19d843a4fbfbac52f1878b1da2ed5793ec9b1a65"}, - {file = "greenlet-3.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:91e6c7db42638dc45cf2e13c73be16bf83179f7859b07cfc139518941320be96"}, - {file = "greenlet-3.0.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1757936efea16e3f03db20efd0cd50a1c86b06734f9f7338a90c4ba85ec2ad5a"}, - {file = "greenlet-3.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19075157a10055759066854a973b3d1325d964d498a805bb68a1f9af4aaef8ec"}, - {file = "greenlet-3.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9d21aaa84557d64209af04ff48e0ad5e28c5cca67ce43444e939579d085da72"}, - {file = "greenlet-3.0.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2847e5d7beedb8d614186962c3d774d40d3374d580d2cbdab7f184580a39d234"}, - {file = "greenlet-3.0.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:97e7ac860d64e2dcba5c5944cfc8fa9ea185cd84061c623536154d5a89237884"}, - {file = "greenlet-3.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b2c02d2ad98116e914d4f3155ffc905fd0c025d901ead3f6ed07385e19122c94"}, - {file = "greenlet-3.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:22f79120a24aeeae2b4471c711dcf4f8c736a2bb2fabad2a67ac9a55ea72523c"}, - {file = "greenlet-3.0.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:100f78a29707ca1525ea47388cec8a049405147719f47ebf3895e7509c6446aa"}, - {file = "greenlet-3.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:60d5772e8195f4e9ebf74046a9121bbb90090f6550f81d8956a05387ba139353"}, - {file = "greenlet-3.0.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:daa7197b43c707462f06d2c693ffdbb5991cbb8b80b5b984007de431493a319c"}, - {file = "greenlet-3.0.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ea6b8aa9e08eea388c5f7a276fabb1d4b6b9d6e4ceb12cc477c3d352001768a9"}, - {file = "greenlet-3.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d11ebbd679e927593978aa44c10fc2092bc454b7d13fdc958d3e9d508aba7d0"}, - {file = "greenlet-3.0.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:dbd4c177afb8a8d9ba348d925b0b67246147af806f0b104af4d24f144d461cd5"}, - {file = "greenlet-3.0.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20107edf7c2c3644c67c12205dc60b1bb11d26b2610b276f97d666110d1b511d"}, - {file = "greenlet-3.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8bef097455dea90ffe855286926ae02d8faa335ed8e4067326257cb571fc1445"}, - {file = "greenlet-3.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:b2d3337dcfaa99698aa2377c81c9ca72fcd89c07e7eb62ece3f23a3fe89b2ce4"}, - {file = "greenlet-3.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:80ac992f25d10aaebe1ee15df45ca0d7571d0f70b645c08ec68733fb7a020206"}, - {file = "greenlet-3.0.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:337322096d92808f76ad26061a8f5fccb22b0809bea39212cd6c406f6a7060d2"}, - {file = "greenlet-3.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9934adbd0f6e476f0ecff3c94626529f344f57b38c9a541f87098710b18af0a"}, - {file = "greenlet-3.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dc4d815b794fd8868c4d67602692c21bf5293a75e4b607bb92a11e821e2b859a"}, - {file = "greenlet-3.0.1-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:41bdeeb552d814bcd7fb52172b304898a35818107cc8778b5101423c9017b3de"}, - {file = "greenlet-3.0.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:6e6061bf1e9565c29002e3c601cf68569c450be7fc3f7336671af7ddb4657166"}, - {file = "greenlet-3.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:fa24255ae3c0ab67e613556375a4341af04a084bd58764731972bcbc8baeba36"}, - {file = "greenlet-3.0.1-cp37-cp37m-win32.whl", hash = "sha256:b489c36d1327868d207002391f662a1d163bdc8daf10ab2e5f6e41b9b96de3b1"}, - {file = "greenlet-3.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:f33f3258aae89da191c6ebaa3bc517c6c4cbc9b9f689e5d8452f7aedbb913fa8"}, - {file = "greenlet-3.0.1-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:d2905ce1df400360463c772b55d8e2518d0e488a87cdea13dd2c71dcb2a1fa16"}, - {file = "greenlet-3.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a02d259510b3630f330c86557331a3b0e0c79dac3d166e449a39363beaae174"}, - {file = "greenlet-3.0.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:55d62807f1c5a1682075c62436702aaba941daa316e9161e4b6ccebbbf38bda3"}, - {file = "greenlet-3.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3fcc780ae8edbb1d050d920ab44790201f027d59fdbd21362340a85c79066a74"}, - {file = "greenlet-3.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4eddd98afc726f8aee1948858aed9e6feeb1758889dfd869072d4465973f6bfd"}, - {file = "greenlet-3.0.1-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:eabe7090db68c981fca689299c2d116400b553f4b713266b130cfc9e2aa9c5a9"}, - {file = "greenlet-3.0.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f2f6d303f3dee132b322a14cd8765287b8f86cdc10d2cb6a6fae234ea488888e"}, - {file = "greenlet-3.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d923ff276f1c1f9680d32832f8d6c040fe9306cbfb5d161b0911e9634be9ef0a"}, - {file = "greenlet-3.0.1-cp38-cp38-win32.whl", hash = "sha256:0b6f9f8ca7093fd4433472fd99b5650f8a26dcd8ba410e14094c1e44cd3ceddd"}, - {file = "greenlet-3.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:990066bff27c4fcf3b69382b86f4c99b3652bab2a7e685d968cd4d0cfc6f67c6"}, - {file = "greenlet-3.0.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:ce85c43ae54845272f6f9cd8320d034d7a946e9773c693b27d620edec825e376"}, - {file = "greenlet-3.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89ee2e967bd7ff85d84a2de09df10e021c9b38c7d91dead95b406ed6350c6997"}, - {file = "greenlet-3.0.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:87c8ceb0cf8a5a51b8008b643844b7f4a8264a2c13fcbcd8a8316161725383fe"}, - {file = "greenlet-3.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d6a8c9d4f8692917a3dc7eb25a6fb337bff86909febe2f793ec1928cd97bedfc"}, - {file = "greenlet-3.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fbc5b8f3dfe24784cee8ce0be3da2d8a79e46a276593db6868382d9c50d97b1"}, - {file = "greenlet-3.0.1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:85d2b77e7c9382f004b41d9c72c85537fac834fb141b0296942d52bf03fe4a3d"}, - {file = "greenlet-3.0.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:696d8e7d82398e810f2b3622b24e87906763b6ebfd90e361e88eb85b0e554dc8"}, - {file = "greenlet-3.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:329c5a2e5a0ee942f2992c5e3ff40be03e75f745f48847f118a3cfece7a28546"}, - {file = "greenlet-3.0.1-cp39-cp39-win32.whl", hash = "sha256:cf868e08690cb89360eebc73ba4be7fb461cfbc6168dd88e2fbbe6f31812cd57"}, - {file = "greenlet-3.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:ac4a39d1abae48184d420aa8e5e63efd1b75c8444dd95daa3e03f6c6310e9619"}, - {file = "greenlet-3.0.1.tar.gz", hash = "sha256:816bd9488a94cba78d93e1abb58000e8266fa9cc2aa9ccdd6eb0696acb24005b"}, + {file = "greenlet-3.1.1-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:0bbae94a29c9e5c7e4a2b7f0aae5c17e8e90acbfd3bf6270eeba60c39fce3563"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0fde093fb93f35ca72a556cf72c92ea3ebfda3d79fc35bb19fbe685853869a83"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:36b89d13c49216cadb828db8dfa6ce86bbbc476a82d3a6c397f0efae0525bdd0"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:94b6150a85e1b33b40b1464a3f9988dcc5251d6ed06842abff82e42632fac120"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93147c513fac16385d1036b7e5b102c7fbbdb163d556b791f0f11eada7ba65dc"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:da7a9bff22ce038e19bf62c4dd1ec8391062878710ded0a845bcf47cc0200617"}, + {file = "greenlet-3.1.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b2795058c23988728eec1f36a4e5e4ebad22f8320c85f3587b539b9ac84128d7"}, + {file = "greenlet-3.1.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ed10eac5830befbdd0c32f83e8aa6288361597550ba669b04c48f0f9a2c843c6"}, + {file = "greenlet-3.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:77c386de38a60d1dfb8e55b8c1101d68c79dfdd25c7095d51fec2dd800892b80"}, + {file = "greenlet-3.1.1-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:e4d333e558953648ca09d64f13e6d8f0523fa705f51cae3f03b5983489958c70"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09fc016b73c94e98e29af67ab7b9a879c307c6731a2c9da0db5a7d9b7edd1159"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d5e975ca70269d66d17dd995dafc06f1b06e8cb1ec1e9ed54c1d1e4a7c4cf26e"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3b2813dc3de8c1ee3f924e4d4227999285fd335d1bcc0d2be6dc3f1f6a318ec1"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e347b3bfcf985a05e8c0b7d462ba6f15b1ee1c909e2dcad795e49e91b152c383"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:9e8f8c9cb53cdac7ba9793c276acd90168f416b9ce36799b9b885790f8ad6c0a"}, + {file = "greenlet-3.1.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:62ee94988d6b4722ce0028644418d93a52429e977d742ca2ccbe1c4f4a792511"}, + {file = "greenlet-3.1.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1776fd7f989fc6b8d8c8cb8da1f6b82c5814957264d1f6cf818d475ec2bf6395"}, + {file = "greenlet-3.1.1-cp311-cp311-win_amd64.whl", hash = "sha256:48ca08c771c268a768087b408658e216133aecd835c0ded47ce955381105ba39"}, + {file = "greenlet-3.1.1-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:4afe7ea89de619adc868e087b4d2359282058479d7cfb94970adf4b55284574d"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f406b22b7c9a9b4f8aa9d2ab13d6ae0ac3e85c9a809bd590ad53fed2bf70dc79"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c3a701fe5a9695b238503ce5bbe8218e03c3bcccf7e204e455e7462d770268aa"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2846930c65b47d70b9d178e89c7e1a69c95c1f68ea5aa0a58646b7a96df12441"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99cfaa2110534e2cf3ba31a7abcac9d328d1d9f1b95beede58294a60348fba36"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:1443279c19fca463fc33e65ef2a935a5b09bb90f978beab37729e1c3c6c25fe9"}, + {file = "greenlet-3.1.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:b7cede291382a78f7bb5f04a529cb18e068dd29e0fb27376074b6d0317bf4dd0"}, + {file = "greenlet-3.1.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:23f20bb60ae298d7d8656c6ec6db134bca379ecefadb0b19ce6f19d1f232a942"}, + {file = "greenlet-3.1.1-cp312-cp312-win_amd64.whl", hash = "sha256:7124e16b4c55d417577c2077be379514321916d5790fa287c9ed6f23bd2ffd01"}, + {file = "greenlet-3.1.1-cp313-cp313-macosx_11_0_universal2.whl", hash = "sha256:05175c27cb459dcfc05d026c4232f9de8913ed006d42713cb8a5137bd49375f1"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:935e943ec47c4afab8965954bf49bfa639c05d4ccf9ef6e924188f762145c0ff"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:667a9706c970cb552ede35aee17339a18e8f2a87a51fba2ed39ceeeb1004798a"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b8a678974d1f3aa55f6cc34dc480169d58f2e6d8958895d68845fa4ab566509e"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efc0f674aa41b92da8c49e0346318c6075d734994c3c4e4430b1c3f853e498e4"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0153404a4bb921f0ff1abeb5ce8a5131da56b953eda6e14b88dc6bbc04d2049e"}, + {file = "greenlet-3.1.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:275f72decf9932639c1c6dd1013a1bc266438eb32710016a1c742df5da6e60a1"}, + {file = "greenlet-3.1.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c4aab7f6381f38a4b42f269057aee279ab0fc7bf2e929e3d4abfae97b682a12c"}, + {file = "greenlet-3.1.1-cp313-cp313-win_amd64.whl", hash = "sha256:b42703b1cf69f2aa1df7d1030b9d77d3e584a70755674d60e710f0af570f3761"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f1695e76146579f8c06c1509c7ce4dfe0706f49c6831a817ac04eebb2fd02011"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7876452af029456b3f3549b696bb36a06db7c90747740c5302f74a9e9fa14b13"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4ead44c85f8ab905852d3de8d86f6f8baf77109f9da589cb4fa142bd3b57b475"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8320f64b777d00dd7ccdade271eaf0cad6636343293a25074cc5566160e4de7b"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6510bf84a6b643dabba74d3049ead221257603a253d0a9873f55f6a59a65f822"}, + {file = "greenlet-3.1.1-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:04b013dc07c96f83134b1e99888e7a79979f1a247e2a9f59697fa14b5862ed01"}, + {file = "greenlet-3.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:411f015496fec93c1c8cd4e5238da364e1da7a124bcb293f085bf2860c32c6f6"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:47da355d8687fd65240c364c90a31569a133b7b60de111c255ef5b606f2ae291"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98884ecf2ffb7d7fe6bd517e8eb99d31ff7855a840fa6d0d63cd07c037f6a981"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f1d4aeb8891338e60d1ab6127af1fe45def5259def8094b9c7e34690c8858803"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db32b5348615a04b82240cc67983cb315309e88d444a288934ee6ceaebcad6cc"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:dcc62f31eae24de7f8dce72134c8651c58000d3b1868e01392baea7c32c247de"}, + {file = "greenlet-3.1.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1d3755bcb2e02de341c55b4fca7a745a24a9e7212ac953f6b3a48d117d7257aa"}, + {file = "greenlet-3.1.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:b8da394b34370874b4572676f36acabac172602abf054cbc4ac910219f3340af"}, + {file = "greenlet-3.1.1-cp37-cp37m-win32.whl", hash = "sha256:a0dfc6c143b519113354e780a50381508139b07d2177cb6ad6a08278ec655798"}, + {file = "greenlet-3.1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:54558ea205654b50c438029505def3834e80f0869a70fb15b871c29b4575ddef"}, + {file = "greenlet-3.1.1-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:346bed03fe47414091be4ad44786d1bd8bef0c3fcad6ed3dee074a032ab408a9"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfc59d69fc48664bc693842bd57acfdd490acafda1ab52c7836e3fc75c90a111"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d21e10da6ec19b457b82636209cbe2331ff4306b54d06fa04b7c138ba18c8a81"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:37b9de5a96111fc15418819ab4c4432e4f3c2ede61e660b1e33971eba26ef9ba"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ef9ea3f137e5711f0dbe5f9263e8c009b7069d8a1acea822bd5e9dae0ae49c8"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:85f3ff71e2e60bd4b4932a043fbbe0f499e263c628390b285cb599154a3b03b1"}, + {file = "greenlet-3.1.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:95ffcf719966dd7c453f908e208e14cde192e09fde6c7186c8f1896ef778d8cd"}, + {file = "greenlet-3.1.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:03a088b9de532cbfe2ba2034b2b85e82df37874681e8c470d6fb2f8c04d7e4b7"}, + {file = "greenlet-3.1.1-cp38-cp38-win32.whl", hash = "sha256:8b8b36671f10ba80e159378df9c4f15c14098c4fd73a36b9ad715f057272fbef"}, + {file = "greenlet-3.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:7017b2be767b9d43cc31416aba48aab0d2309ee31b4dbf10a1d38fb7972bdf9d"}, + {file = "greenlet-3.1.1-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:396979749bd95f018296af156201d6211240e7a23090f50a8d5d18c370084dc3"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca9d0ff5ad43e785350894d97e13633a66e2b50000e8a183a50a88d834752d42"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f6ff3b14f2df4c41660a7dec01045a045653998784bf8cfcb5a525bdffffbc8f"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:94ebba31df2aa506d7b14866fed00ac141a867e63143fe5bca82a8e503b36437"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:73aaad12ac0ff500f62cebed98d8789198ea0e6f233421059fa68a5aa7220145"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:63e4844797b975b9af3a3fb8f7866ff08775f5426925e1e0bbcfe7932059a12c"}, + {file = "greenlet-3.1.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7939aa3ca7d2a1593596e7ac6d59391ff30281ef280d8632fa03d81f7c5f955e"}, + {file = "greenlet-3.1.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d0028e725ee18175c6e422797c407874da24381ce0690d6b9396c204c7f7276e"}, + {file = "greenlet-3.1.1-cp39-cp39-win32.whl", hash = "sha256:5e06afd14cbaf9e00899fae69b24a32f2196c19de08fcb9f4779dd4f004e5e7c"}, + {file = "greenlet-3.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:3319aa75e0e0639bc15ff54ca327e8dc7a6fe404003496e3c6925cd3142e0e22"}, + {file = "greenlet-3.1.1.tar.gz", hash = "sha256:4ce3ac6cdb6adf7946475d7ef31777c26d94bccc377e070a7986bd2d5c515467"}, ] [package.extras] -docs = ["Sphinx"] +docs = ["Sphinx", "furo"] test = ["objgraph", "psutil"] [[package]] name = "gspread" -version = "5.12.1" +version = "6.1.2" description = "Google Spreadsheets Python API" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "gspread-5.12.1-py3-none-any.whl", hash = "sha256:0de00abef97d75c0a128a0d87ca570b5ff26edc8a9fa9e3351582de7d0e0e408"}, - {file = "gspread-5.12.1.tar.gz", hash = "sha256:eb1e657fe27869fb8a75ba71a88adb69285be9c6ed9a8fabd4386b059ada69d9"}, + {file = "gspread-6.1.2-py3-none-any.whl", hash = "sha256:345996fbb74051ee574e3d330a375ac625774f289459f73cb1f8b6fb3cf4cac5"}, + {file = "gspread-6.1.2.tar.gz", hash = "sha256:b147688b8c7a18c9835d5f998997ec17c97c0470babcab17f65ac2b3a32402b7"}, ] [package.dependencies] @@ -658,13 +672,13 @@ google-auth-oauthlib = ">=0.4.1" [[package]] name = "gspread-formatting" -version = "1.1.2" +version = "1.2.0" description = "Complete Google Sheets formatting support for gspread worksheets" optional = false python-versions = "*" files = [ - {file = "gspread-formatting-1.1.2.tar.gz", hash = "sha256:4d954d8c283880c4189f5684652b114c3889ffa4b442f339b80e2371782cb4c0"}, - {file = "gspread_formatting-1.1.2-py2.py3-none-any.whl", hash = "sha256:e5d14477f18ec2f08db0a00d22470d1c621d53b0633412c4873d86712c9a7bca"}, + {file = "gspread-formatting-1.2.0.tar.gz", hash = "sha256:ba88eab6940e8f37580fc3073e89848ab7a6eaab4ed91f43b731579280c14086"}, + {file = "gspread_formatting-1.2.0-py2.py3-none-any.whl", hash = "sha256:9400a2369021ae6f6b31ed12eeddea35e5cfe1fd6c795487ed228eaf10fafad5"}, ] [package.dependencies] @@ -697,33 +711,40 @@ pyparsing = {version = ">=2.4.2,<3.0.0 || >3.0.0,<3.0.1 || >3.0.1,<3.0.2 || >3.0 [[package]] name = "idna" -version = "3.7" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + [[package]] name = "importlib-metadata" -version = "7.0.1" +version = "8.5.0" description = "Read metadata from Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "importlib_metadata-7.0.1-py3-none-any.whl", hash = "sha256:4805911c3a4ec7c3966410053e9ec6a1fecd629117df5adee56dfc9432a1081e"}, - {file = "importlib_metadata-7.0.1.tar.gz", hash = "sha256:f238736bb06590ae52ac1fab06a3a9ef1d8dce2b7a35b5ab329371d6c8f5d2cc"}, + {file = "importlib_metadata-8.5.0-py3-none-any.whl", hash = "sha256:45e54197d28b7a7f1559e60b95e7c567032b602131fbd588f1497f47880aa68b"}, + {file = "importlib_metadata-8.5.0.tar.gz", hash = "sha256:71522656f0abace1d072b9e5481a48f07c138e00f079c38c8f883823f9c26bd7"}, ] [package.dependencies] -zipp = ">=0.5" +zipp = ">=3.20" [package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] perf = ["ipython"] -testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)", "pytest-ruff"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-perf (>=0.9.2)"] +type = ["pytest-mypy"] [[package]] name = "iniconfig" @@ -783,12 +804,12 @@ i18n = ["Babel (>=2.7)"] [[package]] name = "jsbeautifier" -version = "1.14.11" +version = "1.15.1" description = "JavaScript unobfuscator and beautifier." optional = false python-versions = "*" files = [ - {file = "jsbeautifier-1.14.11.tar.gz", hash = "sha256:6b632581ea60dd1c133cd25a48ad187b4b91f526623c4b0fb5443ef805250505"}, + {file = "jsbeautifier-1.15.1.tar.gz", hash = "sha256:ebd733b560704c602d744eafc839db60a1ee9326e30a2a80c4adb8718adc1b24"}, ] [package.dependencies] @@ -851,13 +872,13 @@ jsonpointer = ">=1.9" [[package]] name = "jsonpath-ng" -version = "1.6.0" +version = "1.6.1" description = "A final implementation of JSONPath for Python that aims to be standard compliant, including arithmetic and binary comparison operators and providing clear AST for metaprogramming." optional = false python-versions = "*" files = [ - {file = "jsonpath-ng-1.6.0.tar.gz", hash = "sha256:5483f8e9d74c39c9abfab554c070ae783c1c8cbadf5df60d561bc705ac68a07e"}, - {file = "jsonpath_ng-1.6.0-py3-none-any.whl", hash = "sha256:6fd04833412c4b3d9299edf369542f5e67095ca84efa17cbb7f06a34958adc9f"}, + {file = "jsonpath-ng-1.6.1.tar.gz", hash = "sha256:086c37ba4917304850bd837aeab806670224d3f038fe2833ff593a672ef0a5fa"}, + {file = "jsonpath_ng-1.6.1-py3-none-any.whl", hash = "sha256:8f22cd8273d7772eea9aaa84d922e0841aa36fdb8a2c6b7f6c3791a16a9bc0be"}, ] [package.dependencies] @@ -865,24 +886,24 @@ ply = "*" [[package]] name = "jsonpointer" -version = "2.4" +version = "3.0.0" description = "Identify specific nodes in a JSON document (RFC 6901)" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*" +python-versions = ">=3.7" files = [ - {file = "jsonpointer-2.4-py2.py3-none-any.whl", hash = "sha256:15d51bba20eea3165644553647711d150376234112651b4f1811022aecad7d7a"}, - {file = "jsonpointer-2.4.tar.gz", hash = "sha256:585cee82b70211fa9e6043b7bb89db6e1aa49524340dde8ad6b63206ea689d88"}, + {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"}, + {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"}, ] [[package]] name = "jsonschema" -version = "4.20.0" +version = "4.23.0" description = "An implementation of JSON Schema validation for Python" optional = false python-versions = ">=3.8" files = [ - {file = "jsonschema-4.20.0-py3-none-any.whl", hash = "sha256:ed6231f0429ecf966f5bc8dfef245998220549cbbcf140f913b7464c52c3b6b3"}, - {file = "jsonschema-4.20.0.tar.gz", hash = "sha256:4f614fd46d8d61258610998997743ec5492a648b33cf478c1ddc23ed4598a5fa"}, + {file = "jsonschema-4.23.0-py3-none-any.whl", hash = "sha256:fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566"}, + {file = "jsonschema-4.23.0.tar.gz", hash = "sha256:d71497fef26351a33265337fa77ffeb82423f3ea21283cd9467bb03999266bc4"}, ] [package.dependencies] @@ -901,17 +922,17 @@ webcolors = {version = ">=1.11", optional = true, markers = "extra == \"format\" [package.extras] format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] -format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=1.11)"] +format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=24.6.0)"] [[package]] name = "jsonschema-specifications" -version = "2023.11.1" +version = "2023.12.1" description = "The JSON Schema meta-schemas and vocabularies, exposed as a Registry" optional = false python-versions = ">=3.8" files = [ - {file = "jsonschema_specifications-2023.11.1-py3-none-any.whl", hash = "sha256:f596778ab612b3fd29f72ea0d990393d0540a5aab18bf0407a46632eab540779"}, - {file = "jsonschema_specifications-2023.11.1.tar.gz", hash = "sha256:c9b234904ffe02f079bf91b14d79987faa685fd4b39c377a0996954c0090b9ca"}, + {file = "jsonschema_specifications-2023.12.1-py3-none-any.whl", hash = "sha256:87e4fdf3a94858b8a2ba2778d9ba57d8a9cafca7c7489c46ba0d30a8bc6a9c3c"}, + {file = "jsonschema_specifications-2023.12.1.tar.gz", hash = "sha256:48a76787b3e70f5ed53f1160d2b81f586e4ca6d1548c5de7085d1682674764cc"}, ] [package.dependencies] @@ -919,13 +940,13 @@ referencing = ">=0.31.0" [[package]] name = "linkml" -version = "1.7.8" +version = "1.8.3" description = "Linked Open Data Modeling Language" optional = false python-versions = "<4.0.0,>=3.8.1" files = [ - {file = "linkml-1.7.8-py3-none-any.whl", hash = "sha256:4b8ebe33b422517b08ca01802dc2899ac133c502a71d811c58fa6f4263130709"}, - {file = "linkml-1.7.8.tar.gz", hash = "sha256:af48ee1ad6751c8d20de2832dbeefe225da9be5f39a7f8ea7821a691cf7c0148"}, + {file = "linkml-1.8.3-py3-none-any.whl", hash = "sha256:ced1af3055312d15335cfe8846847c0491519c9af28cce5ebd8e4e26e4361754"}, + {file = "linkml-1.8.3.tar.gz", hash = "sha256:6bf65f3d6c4ce9e88af0fda71b954ae4c6f5e885f8b4d74c1090380d565e76ba"}, ] [package.dependencies] @@ -938,7 +959,7 @@ jinja2 = ">=3.1.0" jsonasobj2 = ">=1.0.3,<2.0.0" jsonschema = {version = ">=4.0.0", extras = ["format"]} linkml-dataops = "*" -linkml-runtime = ">=1.7.4" +linkml-runtime = ">=1.8.1,<2.0.0" openpyxl = "*" parse = "*" prefixcommons = ">=0.1.7" @@ -979,13 +1000,13 @@ linkml-runtime = ">=1.1.6" [[package]] name = "linkml-runtime" -version = "1.7.5" +version = "1.8.2" description = "Runtime environment for LinkML, the Linked open data modeling language" optional = false python-versions = "<4.0,>=3.8" files = [ - {file = "linkml_runtime-1.7.5-py3-none-any.whl", hash = "sha256:c58000c7c68fa97b7d76c50421a85a64e25f07eec5bcac464bc00c4cd79007a6"}, - {file = "linkml_runtime-1.7.5.tar.gz", hash = "sha256:b31197a5398359441ae1ed43470c54377a1d08db961366dda670300dddcd71d7"}, + {file = "linkml_runtime-1.8.2-py3-none-any.whl", hash = "sha256:a66d7b5b82cb57b2d6c603c75ca22db4bae0409e0fb2b9e7835f921a23716096"}, + {file = "linkml_runtime-1.8.2.tar.gz", hash = "sha256:f5067aeeb96c8d3ca1761b55b82d927af88d810459d533fb1f7876a90224b130"}, ] [package.dependencies] @@ -1005,13 +1026,13 @@ requests = "*" [[package]] name = "markdown" -version = "3.5.1" +version = "3.7" description = "Python implementation of John Gruber's Markdown." optional = false python-versions = ">=3.8" files = [ - {file = "Markdown-3.5.1-py3-none-any.whl", hash = "sha256:5874b47d4ee3f0b14d764324d2c94c03ea66bee56f2d929da9f2508d65e722dc"}, - {file = "Markdown-3.5.1.tar.gz", hash = "sha256:b65d7beb248dc22f2e8a31fb706d93798093c308dc1aba295aedeb9d41a813bd"}, + {file = "Markdown-3.7-py3-none-any.whl", hash = "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803"}, + {file = "markdown-3.7.tar.gz", hash = "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2"}, ] [package.dependencies] @@ -1023,71 +1044,71 @@ testing = ["coverage", "pyyaml"] [[package]] name = "markupsafe" -version = "2.1.3" +version = "2.1.5" description = "Safely add untrusted strings to HTML/XML markup." optional = false python-versions = ">=3.7" files = [ - {file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:cd0f502fe016460680cd20aaa5a76d241d6f35a1c3350c474bac1273803893fa"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e09031c87a1e51556fdcb46e5bd4f59dfb743061cf93c4d6831bf894f125eb57"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68e78619a61ecf91e76aa3e6e8e33fc4894a2bebe93410754bd28fce0a8a4f9f"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65c1a9bcdadc6c28eecee2c119465aebff8f7a584dd719facdd9e825ec61ab52"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:525808b8019e36eb524b8c68acdd63a37e75714eac50e988180b169d64480a00"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:962f82a3086483f5e5f64dbad880d31038b698494799b097bc59c2edf392fce6"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:aa7bd130efab1c280bed0f45501b7c8795f9fdbeb02e965371bbef3523627779"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c9c804664ebe8f83a211cace637506669e7890fec1b4195b505c214e50dd4eb7"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-win32.whl", hash = "sha256:10bbfe99883db80bdbaff2dcf681dfc6533a614f700da1287707e8a5d78a8431"}, - {file = "MarkupSafe-2.1.3-cp310-cp310-win_amd64.whl", hash = "sha256:1577735524cdad32f9f694208aa75e422adba74f1baee7551620e43a3141f559"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ad9e82fb8f09ade1c3e1b996a6337afac2b8b9e365f926f5a61aacc71adc5b3c"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3c0fae6c3be832a0a0473ac912810b2877c8cb9d76ca48de1ed31e1c68386575"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b076b6226fb84157e3f7c971a47ff3a679d837cf338547532ab866c57930dbee"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfce63a9e7834b12b87c64d6b155fdd9b3b96191b6bd334bf37db7ff1fe457f2"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:338ae27d6b8745585f87218a3f23f1512dbf52c26c28e322dbe54bcede54ccb9"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e4dd52d80b8c83fdce44e12478ad2e85c64ea965e75d66dbeafb0a3e77308fcc"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:df0be2b576a7abbf737b1575f048c23fb1d769f267ec4358296f31c2479db8f9"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-win32.whl", hash = "sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb"}, - {file = "MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:f698de3fd0c4e6972b92290a45bd9b1536bffe8c6759c62471efaa8acb4c37bc"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aa57bd9cf8ae831a362185ee444e15a93ecb2e344c8e52e4d721ea3ab6ef1823"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffcc3f7c66b5f5b7931a5aa68fc9cecc51e685ef90282f4a82f0f5e9b704ad11"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47d4f1c5f80fc62fdd7777d0d40a2e9dda0a05883ab11374334f6c4de38adffd"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1f67c7038d560d92149c060157d623c542173016c4babc0c1913cca0564b9939"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:9aad3c1755095ce347e26488214ef77e0485a3c34a50c5a5e2471dff60b9dd9c"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:14ff806850827afd6b07a5f32bd917fb7f45b046ba40c57abdb636674a8b559c"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8f9293864fe09b8149f0cc42ce56e3f0e54de883a9de90cd427f191c346eb2e1"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-win32.whl", hash = "sha256:715d3562f79d540f251b99ebd6d8baa547118974341db04f5ad06d5ea3eb8007"}, - {file = "MarkupSafe-2.1.3-cp312-cp312-win_amd64.whl", hash = "sha256:1b8dd8c3fd14349433c79fa8abeb573a55fc0fdd769133baac1f5e07abf54aeb"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca379055a47383d02a5400cb0d110cef0a776fc644cda797db0c5696cfd7e18e"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b7ff0f54cb4ff66dd38bebd335a38e2c22c41a8ee45aa608efc890ac3e3931bc"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c011a4149cfbcf9f03994ec2edffcb8b1dc2d2aede7ca243746df97a5d41ce48"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:56d9f2ecac662ca1611d183feb03a3fa4406469dafe241673d521dd5ae92a155"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-win32.whl", hash = "sha256:8758846a7e80910096950b67071243da3e5a20ed2546e6392603c096778d48e0"}, - {file = "MarkupSafe-2.1.3-cp37-cp37m-win_amd64.whl", hash = "sha256:787003c0ddb00500e49a10f2844fac87aa6ce977b90b0feaaf9de23c22508b24"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:2ef12179d3a291be237280175b542c07a36e7f60718296278d8593d21ca937d4"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2c1b19b3aaacc6e57b7e25710ff571c24d6c3613a45e905b1fde04d691b98ee0"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8afafd99945ead6e075b973fefa56379c5b5c53fd8937dad92c662da5d8fd5ee"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c41976a29d078bb235fea9b2ecd3da465df42a562910f9022f1a03107bd02be"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d080e0a5eb2529460b30190fcfcc4199bd7f827663f858a226a81bc27beaa97e"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:69c0f17e9f5a7afdf2cc9fb2d1ce6aabdb3bafb7f38017c0b77862bcec2bbad8"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:504b320cd4b7eff6f968eddf81127112db685e81f7e36e75f9f84f0df46041c3"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:42de32b22b6b804f42c5d98be4f7e5e977ecdd9ee9b660fda1a3edf03b11792d"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-win32.whl", hash = "sha256:ceb01949af7121f9fc39f7d27f91be8546f3fb112c608bc4029aef0bab86a2a5"}, - {file = "MarkupSafe-2.1.3-cp38-cp38-win_amd64.whl", hash = "sha256:1b40069d487e7edb2676d3fbdb2b0829ffa2cd63a2ec26c4938b2d34391b4ecc"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:8023faf4e01efadfa183e863fefde0046de576c6f14659e8782065bcece22198"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6b2b56950d93e41f33b4223ead100ea0fe11f8e6ee5f641eb753ce4b77a7042b"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9dcdfd0eaf283af041973bff14a2e143b8bd64e069f4c383416ecd79a81aab58"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05fb21170423db021895e1ea1e1f3ab3adb85d1c2333cbc2310f2a26bc77272e"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:282c2cb35b5b673bbcadb33a585408104df04f14b2d9b01d4c345a3b92861c2c"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ab4a0df41e7c16a1392727727e7998a467472d0ad65f3ad5e6e765015df08636"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7ef3cb2ebbf91e330e3bb937efada0edd9003683db6b57bb108c4001f37a02ea"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0a4e4a1aff6c7ac4cd55792abf96c915634c2b97e3cc1c7129578aa68ebd754e"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-win32.whl", hash = "sha256:fec21693218efe39aa7f8599346e90c705afa52c5b31ae019b2e57e8f6542bb2"}, - {file = "MarkupSafe-2.1.3-cp39-cp39-win_amd64.whl", hash = "sha256:3fd4abcb888d15a94f32b75d8fd18ee162ca0c064f35b11134be77050296d6ba"}, - {file = "MarkupSafe-2.1.3.tar.gz", hash = "sha256:af598ed32d6ae86f1b747b82783958b1a4ab8f617b06fe68795c7f026abbdcad"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"}, + {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, ] [[package]] @@ -1103,44 +1124,61 @@ files = [ [[package]] name = "mkdocs" -version = "1.5.3" +version = "1.6.1" description = "Project documentation with Markdown." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "mkdocs-1.5.3-py3-none-any.whl", hash = "sha256:3b3a78e736b31158d64dbb2f8ba29bd46a379d0c6e324c2246c3bc3d2189cfc1"}, - {file = "mkdocs-1.5.3.tar.gz", hash = "sha256:eb7c99214dcb945313ba30426c2451b735992c73c2e10838f76d09e39ff4d0e2"}, + {file = "mkdocs-1.6.1-py3-none-any.whl", hash = "sha256:db91759624d1647f3f34aa0c3f327dd2601beae39a366d6e064c03468d35c20e"}, + {file = "mkdocs-1.6.1.tar.gz", hash = "sha256:7b432f01d928c084353ab39c57282f29f92136665bdd6abf7c1ec8d822ef86f2"}, ] [package.dependencies] click = ">=7.0" colorama = {version = ">=0.4", markers = "platform_system == \"Windows\""} ghp-import = ">=1.0" -importlib-metadata = {version = ">=4.3", markers = "python_version < \"3.10\""} +importlib-metadata = {version = ">=4.4", markers = "python_version < \"3.10\""} jinja2 = ">=2.11.1" -markdown = ">=3.2.1" +markdown = ">=3.3.6" markupsafe = ">=2.0.1" mergedeep = ">=1.3.4" +mkdocs-get-deps = ">=0.2.0" packaging = ">=20.5" pathspec = ">=0.11.1" -platformdirs = ">=2.2.0" pyyaml = ">=5.1" pyyaml-env-tag = ">=0.1" watchdog = ">=2.0" [package.extras] i18n = ["babel (>=2.9.0)"] -min-versions = ["babel (==2.9.0)", "click (==7.0)", "colorama (==0.4)", "ghp-import (==1.0)", "importlib-metadata (==4.3)", "jinja2 (==2.11.1)", "markdown (==3.2.1)", "markupsafe (==2.0.1)", "mergedeep (==1.3.4)", "packaging (==20.5)", "pathspec (==0.11.1)", "platformdirs (==2.2.0)", "pyyaml (==5.1)", "pyyaml-env-tag (==0.1)", "typing-extensions (==3.10)", "watchdog (==2.0)"] +min-versions = ["babel (==2.9.0)", "click (==7.0)", "colorama (==0.4)", "ghp-import (==1.0)", "importlib-metadata (==4.4)", "jinja2 (==2.11.1)", "markdown (==3.3.6)", "markupsafe (==2.0.1)", "mergedeep (==1.3.4)", "mkdocs-get-deps (==0.2.0)", "packaging (==20.5)", "pathspec (==0.11.1)", "pyyaml (==5.1)", "pyyaml-env-tag (==0.1)", "watchdog (==2.0)"] + +[[package]] +name = "mkdocs-get-deps" +version = "0.2.0" +description = "MkDocs extension that lists all dependencies according to a mkdocs.yml file" +optional = false +python-versions = ">=3.8" +files = [ + {file = "mkdocs_get_deps-0.2.0-py3-none-any.whl", hash = "sha256:2bf11d0b133e77a0dd036abeeb06dec8775e46efa526dc70667d8863eefc6134"}, + {file = "mkdocs_get_deps-0.2.0.tar.gz", hash = "sha256:162b3d129c7fad9b19abfdcb9c1458a651628e4b1dea628ac68790fb3061c60c"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.3", markers = "python_version < \"3.10\""} +mergedeep = ">=1.3.4" +platformdirs = ">=2.2.0" +pyyaml = ">=5.1" [[package]] name = "mkdocs-material" -version = "9.5.17" +version = "9.5.36" description = "Documentation that simply works" optional = false python-versions = ">=3.8" files = [ - {file = "mkdocs_material-9.5.17-py3-none-any.whl", hash = "sha256:14a2a60119a785e70e765dd033e6211367aca9fc70230e577c1cf6a326949571"}, - {file = "mkdocs_material-9.5.17.tar.gz", hash = "sha256:06ae1275a72db1989cf6209de9e9ecdfbcfdbc24c58353877b2bb927dbe413e4"}, + {file = "mkdocs_material-9.5.36-py3-none-any.whl", hash = "sha256:36734c1fd9404bea74236242ba3359b267fc930c7233b9fd086b0898825d0ac9"}, + {file = "mkdocs_material-9.5.36.tar.gz", hash = "sha256:140456f761320f72b399effc073fa3f8aac744c77b0970797c201cae2f6c967f"}, ] [package.dependencies] @@ -1148,7 +1186,7 @@ babel = ">=2.10,<3.0" colorama = ">=0.4,<1.0" jinja2 = ">=3.0,<4.0" markdown = ">=3.2,<4.0" -mkdocs = ">=1.5.3,<1.6.0" +mkdocs = ">=1.6,<2.0" mkdocs-material-extensions = ">=1.3,<2.0" paginate = ">=0.5,<1.0" pygments = ">=2.16,<3.0" @@ -1250,13 +1288,13 @@ termcolor = "*" [[package]] name = "openpyxl" -version = "3.1.2" +version = "3.1.5" description = "A Python library to read/write Excel 2010 xlsx/xlsm files" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "openpyxl-3.1.2-py2.py3-none-any.whl", hash = "sha256:f91456ead12ab3c6c2e9491cf33ba6d08357d802192379bb482f1033ade496f5"}, - {file = "openpyxl-3.1.2.tar.gz", hash = "sha256:a6f5977418eff3b2d5500d54d9db50c8277a368436f4e4f8ddb1be3422870184"}, + {file = "openpyxl-3.1.5-py2.py3-none-any.whl", hash = "sha256:5282c12b107bffeef825f4617dc029afaf41d0ea60823bbb665ef3079dc79de2"}, + {file = "openpyxl-3.1.5.tar.gz", hash = "sha256:cf0e3cf56142039133628b5acffe8ef0c12bc902d2aadd3e0fe5878dc08d1050"}, ] [package.dependencies] @@ -1264,71 +1302,77 @@ et-xmlfile = "*" [[package]] name = "packaging" -version = "23.2" +version = "24.1" description = "Core utilities for Python packages" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, - {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, + {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, + {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, ] [[package]] name = "paginate" -version = "0.5.6" +version = "0.5.7" description = "Divides large result sets into pages for easier browsing" optional = false python-versions = "*" files = [ - {file = "paginate-0.5.6.tar.gz", hash = "sha256:5e6007b6a9398177a7e1648d04fdd9f8c9766a1a945bceac82f1929e8c78af2d"}, + {file = "paginate-0.5.7-py2.py3-none-any.whl", hash = "sha256:b885e2af73abcf01d9559fd5216b57ef722f8c42affbb63942377668e35c7591"}, + {file = "paginate-0.5.7.tar.gz", hash = "sha256:22bd083ab41e1a8b4f3690544afb2c60c25e5c9a63a30fa2f483f6c60c8e5945"}, ] +[package.extras] +dev = ["pytest", "tox"] +lint = ["black"] + [[package]] name = "parse" -version = "1.20.0" +version = "1.20.2" description = "parse() is the opposite of format()" optional = false python-versions = "*" files = [ - {file = "parse-1.20.0-py2.py3-none-any.whl", hash = "sha256:5e171b001452fa9f004c5a58a93525175468daf69b493e9fa915347ed7ff6968"}, - {file = "parse-1.20.0.tar.gz", hash = "sha256:bd28bae37714b45d5894d77160a16e2be36b64a3b618c81168b3684676aa498b"}, + {file = "parse-1.20.2-py2.py3-none-any.whl", hash = "sha256:967095588cb802add9177d0c0b6133b5ba33b1ea9007ca800e526f42a85af558"}, + {file = "parse-1.20.2.tar.gz", hash = "sha256:b41d604d16503c79d81af5165155c0b20f6c8d6c559efa66b4b695c3e5a0a0ce"}, ] [[package]] name = "pathspec" -version = "0.11.2" +version = "0.12.1" description = "Utility library for gitignore style pattern matching of file paths." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "pathspec-0.11.2-py3-none-any.whl", hash = "sha256:1d6ed233af05e679efb96b1851550ea95bbb64b7c490b0f5aa52996c11e92a20"}, - {file = "pathspec-0.11.2.tar.gz", hash = "sha256:e0d8d0ac2f12da61956eb2306b69f9469b42f4deb0f3cb6ed47b9cce9996ced3"}, + {file = "pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08"}, + {file = "pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712"}, ] [[package]] name = "platformdirs" -version = "4.0.0" -description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." +version = "4.3.6" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "platformdirs-4.0.0-py3-none-any.whl", hash = "sha256:118c954d7e949b35437270383a3f2531e99dd93cf7ce4dc8340d3356d30f173b"}, - {file = "platformdirs-4.0.0.tar.gz", hash = "sha256:cb633b2bcf10c51af60beb0ab06d2f1d69064b43abf4c185ca6b28865f3f9731"}, + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, ] [package.extras] -docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.1)", "sphinx-autodoc-typehints (>=1.24)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)"] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] [[package]] name = "pluggy" -version = "1.4.0" +version = "1.5.0" description = "plugin and hook calling mechanisms for python" optional = false python-versions = ">=3.8" files = [ - {file = "pluggy-1.4.0-py3-none-any.whl", hash = "sha256:7db9f7b503d67d1c5b95f59773ebb58a8c1c288129a88665838012cfb07b8981"}, - {file = "pluggy-1.4.0.tar.gz", hash = "sha256:8c85c2876142a764e5b7548e7d9a0e0ddb46f5185161049a79b7e974454223be"}, + {file = "pluggy-1.5.0-py3-none-any.whl", hash = "sha256:44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669"}, + {file = "pluggy-1.5.0.tar.gz", hash = "sha256:2cffa88e94fdc978c4c574f15f9e59b7f4201d439195c3715ca9e2486f1d0cf1"}, ] [package.extras] @@ -1365,195 +1409,200 @@ requests = ">=2.28.1,<3.0.0" [[package]] name = "prefixmaps" -version = "0.2.3" +version = "0.2.5" description = "A python library for retrieving semantic prefix maps" optional = false python-versions = "<4.0,>=3.8" files = [ - {file = "prefixmaps-0.2.3-py3-none-any.whl", hash = "sha256:342f13b74c056f5b99bcd55e79710a7cb53a2908a2a424c68d830d8d68bb9491"}, - {file = "prefixmaps-0.2.3.tar.gz", hash = "sha256:b63df4428672e89dc39a7f02816e47b1e8d74653dd3308a69465d6694fad7618"}, + {file = "prefixmaps-0.2.5-py3-none-any.whl", hash = "sha256:68caa04b3a6a8e058aa1c55affe32c62e44b564d031d63f768e267b796a1f3ee"}, + {file = "prefixmaps-0.2.5.tar.gz", hash = "sha256:aaccd2425ade2ea97a502c58be49fe8f3536e3d5e919712ae0358a39fc800799"}, ] [package.dependencies] curies = ">=0.5.3" pyyaml = ">=5.3.1" +[[package]] +name = "proto-plus" +version = "1.24.0" +description = "Beautiful, Pythonic protocol buffers." +optional = false +python-versions = ">=3.7" +files = [ + {file = "proto-plus-1.24.0.tar.gz", hash = "sha256:30b72a5ecafe4406b0d339db35b56c4059064e69227b8c3bda7462397f966445"}, + {file = "proto_plus-1.24.0-py3-none-any.whl", hash = "sha256:402576830425e5f6ce4c2a6702400ac79897dab0b4343821aa5188b0fab81a12"}, +] + +[package.dependencies] +protobuf = ">=3.19.0,<6.0.0dev" + +[package.extras] +testing = ["google-api-core (>=1.31.5)"] + [[package]] name = "protobuf" -version = "4.25.1" +version = "5.28.2" description = "" optional = false python-versions = ">=3.8" files = [ - {file = "protobuf-4.25.1-cp310-abi3-win32.whl", hash = "sha256:193f50a6ab78a970c9b4f148e7c750cfde64f59815e86f686c22e26b4fe01ce7"}, - {file = "protobuf-4.25.1-cp310-abi3-win_amd64.whl", hash = "sha256:3497c1af9f2526962f09329fd61a36566305e6c72da2590ae0d7d1322818843b"}, - {file = "protobuf-4.25.1-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:0bf384e75b92c42830c0a679b0cd4d6e2b36ae0cf3dbb1e1dfdda48a244f4bcd"}, - {file = "protobuf-4.25.1-cp37-abi3-manylinux2014_aarch64.whl", hash = "sha256:0f881b589ff449bf0b931a711926e9ddaad3b35089cc039ce1af50b21a4ae8cb"}, - {file = "protobuf-4.25.1-cp37-abi3-manylinux2014_x86_64.whl", hash = "sha256:ca37bf6a6d0046272c152eea90d2e4ef34593aaa32e8873fc14c16440f22d4b7"}, - {file = "protobuf-4.25.1-cp38-cp38-win32.whl", hash = "sha256:abc0525ae2689a8000837729eef7883b9391cd6aa7950249dcf5a4ede230d5dd"}, - {file = "protobuf-4.25.1-cp38-cp38-win_amd64.whl", hash = "sha256:1484f9e692091450e7edf418c939e15bfc8fc68856e36ce399aed6889dae8bb0"}, - {file = "protobuf-4.25.1-cp39-cp39-win32.whl", hash = "sha256:8bdbeaddaac52d15c6dce38c71b03038ef7772b977847eb6d374fc86636fa510"}, - {file = "protobuf-4.25.1-cp39-cp39-win_amd64.whl", hash = "sha256:becc576b7e6b553d22cbdf418686ee4daa443d7217999125c045ad56322dda10"}, - {file = "protobuf-4.25.1-py3-none-any.whl", hash = "sha256:a19731d5e83ae4737bb2a089605e636077ac001d18781b3cf489b9546c7c80d6"}, - {file = "protobuf-4.25.1.tar.gz", hash = "sha256:57d65074b4f5baa4ab5da1605c02be90ac20c8b40fb137d6a8df9f416b0d0ce2"}, + {file = "protobuf-5.28.2-cp310-abi3-win32.whl", hash = "sha256:eeea10f3dc0ac7e6b4933d32db20662902b4ab81bf28df12218aa389e9c2102d"}, + {file = "protobuf-5.28.2-cp310-abi3-win_amd64.whl", hash = "sha256:2c69461a7fcc8e24be697624c09a839976d82ae75062b11a0972e41fd2cd9132"}, + {file = "protobuf-5.28.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:a8b9403fc70764b08d2f593ce44f1d2920c5077bf7d311fefec999f8c40f78b7"}, + {file = "protobuf-5.28.2-cp38-abi3-manylinux2014_aarch64.whl", hash = "sha256:35cfcb15f213449af7ff6198d6eb5f739c37d7e4f1c09b5d0641babf2cc0c68f"}, + {file = "protobuf-5.28.2-cp38-abi3-manylinux2014_x86_64.whl", hash = "sha256:5e8a95246d581eef20471b5d5ba010d55f66740942b95ba9b872d918c459452f"}, + {file = "protobuf-5.28.2-cp38-cp38-win32.whl", hash = "sha256:87317e9bcda04a32f2ee82089a204d3a2f0d3c8aeed16568c7daf4756e4f1fe0"}, + {file = "protobuf-5.28.2-cp38-cp38-win_amd64.whl", hash = "sha256:c0ea0123dac3399a2eeb1a1443d82b7afc9ff40241433296769f7da42d142ec3"}, + {file = "protobuf-5.28.2-cp39-cp39-win32.whl", hash = "sha256:ca53faf29896c526863366a52a8f4d88e69cd04ec9571ed6082fa117fac3ab36"}, + {file = "protobuf-5.28.2-cp39-cp39-win_amd64.whl", hash = "sha256:8ddc60bf374785fb7cb12510b267f59067fa10087325b8e1855b898a0d81d276"}, + {file = "protobuf-5.28.2-py3-none-any.whl", hash = "sha256:52235802093bd8a2811abbe8bf0ab9c5f54cca0a751fdd3f6ac2a21438bffece"}, + {file = "protobuf-5.28.2.tar.gz", hash = "sha256:59379674ff119717404f7454647913787034f03fe7049cbef1d74a97bb4593f0"}, ] [[package]] name = "pyasn1" -version = "0.5.1" +version = "0.6.1" description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +python-versions = ">=3.8" files = [ - {file = "pyasn1-0.5.1-py2.py3-none-any.whl", hash = "sha256:4439847c58d40b1d0a573d07e3856e95333f1976294494c325775aeca506eb58"}, - {file = "pyasn1-0.5.1.tar.gz", hash = "sha256:6d391a96e59b23130a5cfa74d6fd7f388dbbe26cc8f1edf39fdddf08d9d6676c"}, + {file = "pyasn1-0.6.1-py3-none-any.whl", hash = "sha256:0d632f46f2ba09143da3a8afe9e33fb6f92fa2320ab7e886e2d0f7672af84629"}, + {file = "pyasn1-0.6.1.tar.gz", hash = "sha256:6f580d2bdd84365380830acf45550f2511469f673cb4a5ae3857a3170128b034"}, ] [[package]] name = "pyasn1-modules" -version = "0.3.0" +version = "0.4.1" description = "A collection of ASN.1-based protocols modules" optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +python-versions = ">=3.8" files = [ - {file = "pyasn1_modules-0.3.0-py2.py3-none-any.whl", hash = "sha256:d3ccd6ed470d9ffbc716be08bd90efbd44d0734bc9303818f7336070984a162d"}, - {file = "pyasn1_modules-0.3.0.tar.gz", hash = "sha256:5bd01446b736eb9d31512a30d46c1ac3395d676c6f3cafa4c03eb54b9925631c"}, + {file = "pyasn1_modules-0.4.1-py3-none-any.whl", hash = "sha256:49bfa96b45a292b711e986f222502c1c9a5e1f4e568fc30e2574a6c7d07838fd"}, + {file = "pyasn1_modules-0.4.1.tar.gz", hash = "sha256:c28e2dbf9c06ad61c71a075c7e0f9fd0f1b0bb2d2ad4377f240d33ac2ab60a7c"}, ] [package.dependencies] -pyasn1 = ">=0.4.6,<0.6.0" +pyasn1 = ">=0.4.6,<0.7.0" [[package]] name = "pydantic" -version = "2.5.2" +version = "2.9.2" description = "Data validation using Python type hints" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "pydantic-2.5.2-py3-none-any.whl", hash = "sha256:80c50fb8e3dcecfddae1adbcc00ec5822918490c99ab31f6cf6140ca1c1429f0"}, - {file = "pydantic-2.5.2.tar.gz", hash = "sha256:ff177ba64c6faf73d7afa2e8cad38fd456c0dbe01c9954e71038001cd15a6edd"}, + {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, + {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.14.5" -typing-extensions = ">=4.6.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.4" +typing-extensions = [ + {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, + {version = ">=4.6.1", markers = "python_version < \"3.13\""}, +] [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.14.5" -description = "" +version = "2.23.4" +description = "Core functionality for Pydantic validation and serialization" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.14.5-cp310-cp310-macosx_10_7_x86_64.whl", hash = "sha256:7e88f5696153dc516ba6e79f82cc4747e87027205f0e02390c21f7cb3bd8abfd"}, - {file = "pydantic_core-2.14.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4641e8ad4efb697f38a9b64ca0523b557c7931c5f84e0fd377a9a3b05121f0de"}, - {file = "pydantic_core-2.14.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:774de879d212db5ce02dfbf5b0da9a0ea386aeba12b0b95674a4ce0593df3d07"}, - {file = "pydantic_core-2.14.5-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ebb4e035e28f49b6f1a7032920bb9a0c064aedbbabe52c543343d39341a5b2a3"}, - {file = "pydantic_core-2.14.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b53e9ad053cd064f7e473a5f29b37fc4cc9dc6d35f341e6afc0155ea257fc911"}, - {file = "pydantic_core-2.14.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8aa1768c151cf562a9992462239dfc356b3d1037cc5a3ac829bb7f3bda7cc1f9"}, - {file = "pydantic_core-2.14.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eac5c82fc632c599f4639a5886f96867ffced74458c7db61bc9a66ccb8ee3113"}, - {file = "pydantic_core-2.14.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d2ae91f50ccc5810b2f1b6b858257c9ad2e08da70bf890dee02de1775a387c66"}, - {file = "pydantic_core-2.14.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6b9ff467ffbab9110e80e8c8de3bcfce8e8b0fd5661ac44a09ae5901668ba997"}, - {file = "pydantic_core-2.14.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:61ea96a78378e3bd5a0be99b0e5ed00057b71f66115f5404d0dae4819f495093"}, - {file = "pydantic_core-2.14.5-cp310-none-win32.whl", hash = "sha256:bb4c2eda937a5e74c38a41b33d8c77220380a388d689bcdb9b187cf6224c9720"}, - {file = "pydantic_core-2.14.5-cp310-none-win_amd64.whl", hash = "sha256:b7851992faf25eac90bfcb7bfd19e1f5ffa00afd57daec8a0042e63c74a4551b"}, - {file = "pydantic_core-2.14.5-cp311-cp311-macosx_10_7_x86_64.whl", hash = "sha256:4e40f2bd0d57dac3feb3a3aed50f17d83436c9e6b09b16af271b6230a2915459"}, - {file = "pydantic_core-2.14.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ab1cdb0f14dc161ebc268c09db04d2c9e6f70027f3b42446fa11c153521c0e88"}, - {file = "pydantic_core-2.14.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aae7ea3a1c5bb40c93cad361b3e869b180ac174656120c42b9fadebf685d121b"}, - {file = "pydantic_core-2.14.5-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:60b7607753ba62cf0739177913b858140f11b8af72f22860c28eabb2f0a61937"}, - {file = "pydantic_core-2.14.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2248485b0322c75aee7565d95ad0e16f1c67403a470d02f94da7344184be770f"}, - {file = "pydantic_core-2.14.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:823fcc638f67035137a5cd3f1584a4542d35a951c3cc68c6ead1df7dac825c26"}, - {file = "pydantic_core-2.14.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96581cfefa9123accc465a5fd0cc833ac4d75d55cc30b633b402e00e7ced00a6"}, - {file = "pydantic_core-2.14.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a33324437018bf6ba1bb0f921788788641439e0ed654b233285b9c69704c27b4"}, - {file = "pydantic_core-2.14.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:9bd18fee0923ca10f9a3ff67d4851c9d3e22b7bc63d1eddc12f439f436f2aada"}, - {file = "pydantic_core-2.14.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:853a2295c00f1d4429db4c0fb9475958543ee80cfd310814b5c0ef502de24dda"}, - {file = "pydantic_core-2.14.5-cp311-none-win32.whl", hash = "sha256:cb774298da62aea5c80a89bd58c40205ab4c2abf4834453b5de207d59d2e1651"}, - {file = "pydantic_core-2.14.5-cp311-none-win_amd64.whl", hash = "sha256:e87fc540c6cac7f29ede02e0f989d4233f88ad439c5cdee56f693cc9c1c78077"}, - {file = "pydantic_core-2.14.5-cp311-none-win_arm64.whl", hash = "sha256:57d52fa717ff445cb0a5ab5237db502e6be50809b43a596fb569630c665abddf"}, - {file = "pydantic_core-2.14.5-cp312-cp312-macosx_10_7_x86_64.whl", hash = "sha256:e60f112ac88db9261ad3a52032ea46388378034f3279c643499edb982536a093"}, - {file = "pydantic_core-2.14.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6e227c40c02fd873c2a73a98c1280c10315cbebe26734c196ef4514776120aeb"}, - {file = "pydantic_core-2.14.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0cbc7fff06a90bbd875cc201f94ef0ee3929dfbd5c55a06674b60857b8b85ed"}, - {file = "pydantic_core-2.14.5-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:103ef8d5b58596a731b690112819501ba1db7a36f4ee99f7892c40da02c3e189"}, - {file = "pydantic_core-2.14.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c949f04ecad823f81b1ba94e7d189d9dfb81edbb94ed3f8acfce41e682e48cef"}, - {file = "pydantic_core-2.14.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c1452a1acdf914d194159439eb21e56b89aa903f2e1c65c60b9d874f9b950e5d"}, - {file = "pydantic_core-2.14.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb4679d4c2b089e5ef89756bc73e1926745e995d76e11925e3e96a76d5fa51fc"}, - {file = "pydantic_core-2.14.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cf9d3fe53b1ee360e2421be95e62ca9b3296bf3f2fb2d3b83ca49ad3f925835e"}, - {file = "pydantic_core-2.14.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:70f4b4851dbb500129681d04cc955be2a90b2248d69273a787dda120d5cf1f69"}, - {file = "pydantic_core-2.14.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:59986de5710ad9613ff61dd9b02bdd2f615f1a7052304b79cc8fa2eb4e336d2d"}, - {file = "pydantic_core-2.14.5-cp312-none-win32.whl", hash = "sha256:699156034181e2ce106c89ddb4b6504c30db8caa86e0c30de47b3e0654543260"}, - {file = "pydantic_core-2.14.5-cp312-none-win_amd64.whl", hash = "sha256:5baab5455c7a538ac7e8bf1feec4278a66436197592a9bed538160a2e7d11e36"}, - {file = "pydantic_core-2.14.5-cp312-none-win_arm64.whl", hash = "sha256:e47e9a08bcc04d20975b6434cc50bf82665fbc751bcce739d04a3120428f3e27"}, - {file = "pydantic_core-2.14.5-cp37-cp37m-macosx_10_7_x86_64.whl", hash = "sha256:af36f36538418f3806048f3b242a1777e2540ff9efaa667c27da63d2749dbce0"}, - {file = "pydantic_core-2.14.5-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:45e95333b8418ded64745f14574aa9bfc212cb4fbeed7a687b0c6e53b5e188cd"}, - {file = "pydantic_core-2.14.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e47a76848f92529879ecfc417ff88a2806438f57be4a6a8bf2961e8f9ca9ec7"}, - {file = "pydantic_core-2.14.5-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d81e6987b27bc7d101c8597e1cd2bcaa2fee5e8e0f356735c7ed34368c471550"}, - {file = "pydantic_core-2.14.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:34708cc82c330e303f4ce87758828ef6e457681b58ce0e921b6e97937dd1e2a3"}, - {file = "pydantic_core-2.14.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:652c1988019752138b974c28f43751528116bcceadad85f33a258869e641d753"}, - {file = "pydantic_core-2.14.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e4d090e73e0725b2904fdbdd8d73b8802ddd691ef9254577b708d413bf3006e"}, - {file = "pydantic_core-2.14.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5c7d5b5005f177764e96bd584d7bf28d6e26e96f2a541fdddb934c486e36fd59"}, - {file = "pydantic_core-2.14.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:a71891847f0a73b1b9eb86d089baee301477abef45f7eaf303495cd1473613e4"}, - {file = "pydantic_core-2.14.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a717aef6971208f0851a2420b075338e33083111d92041157bbe0e2713b37325"}, - {file = "pydantic_core-2.14.5-cp37-none-win32.whl", hash = "sha256:de790a3b5aa2124b8b78ae5faa033937a72da8efe74b9231698b5a1dd9be3405"}, - {file = "pydantic_core-2.14.5-cp37-none-win_amd64.whl", hash = "sha256:6c327e9cd849b564b234da821236e6bcbe4f359a42ee05050dc79d8ed2a91588"}, - {file = "pydantic_core-2.14.5-cp38-cp38-macosx_10_7_x86_64.whl", hash = "sha256:ef98ca7d5995a82f43ec0ab39c4caf6a9b994cb0b53648ff61716370eadc43cf"}, - {file = "pydantic_core-2.14.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c6eae413494a1c3f89055da7a5515f32e05ebc1a234c27674a6956755fb2236f"}, - {file = "pydantic_core-2.14.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcf4e6d85614f7a4956c2de5a56531f44efb973d2fe4a444d7251df5d5c4dcfd"}, - {file = "pydantic_core-2.14.5-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6637560562134b0e17de333d18e69e312e0458ee4455bdad12c37100b7cad706"}, - {file = "pydantic_core-2.14.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:77fa384d8e118b3077cccfcaf91bf83c31fe4dc850b5e6ee3dc14dc3d61bdba1"}, - {file = "pydantic_core-2.14.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:16e29bad40bcf97aac682a58861249ca9dcc57c3f6be22f506501833ddb8939c"}, - {file = "pydantic_core-2.14.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:531f4b4252fac6ca476fbe0e6f60f16f5b65d3e6b583bc4d87645e4e5ddde331"}, - {file = "pydantic_core-2.14.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:074f3d86f081ce61414d2dc44901f4f83617329c6f3ab49d2bc6c96948b2c26b"}, - {file = "pydantic_core-2.14.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c2adbe22ab4babbca99c75c5d07aaf74f43c3195384ec07ccbd2f9e3bddaecec"}, - {file = "pydantic_core-2.14.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0f6116a558fd06d1b7c2902d1c4cf64a5bd49d67c3540e61eccca93f41418124"}, - {file = "pydantic_core-2.14.5-cp38-none-win32.whl", hash = "sha256:fe0a5a1025eb797752136ac8b4fa21aa891e3d74fd340f864ff982d649691867"}, - {file = "pydantic_core-2.14.5-cp38-none-win_amd64.whl", hash = "sha256:079206491c435b60778cf2b0ee5fd645e61ffd6e70c47806c9ed51fc75af078d"}, - {file = "pydantic_core-2.14.5-cp39-cp39-macosx_10_7_x86_64.whl", hash = "sha256:a6a16f4a527aae4f49c875da3cdc9508ac7eef26e7977952608610104244e1b7"}, - {file = "pydantic_core-2.14.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:abf058be9517dc877227ec3223f0300034bd0e9f53aebd63cf4456c8cb1e0863"}, - {file = "pydantic_core-2.14.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:49b08aae5013640a3bfa25a8eebbd95638ec3f4b2eaf6ed82cf0c7047133f03b"}, - {file = "pydantic_core-2.14.5-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c2d97e906b4ff36eb464d52a3bc7d720bd6261f64bc4bcdbcd2c557c02081ed2"}, - {file = "pydantic_core-2.14.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3128e0bbc8c091ec4375a1828d6118bc20404883169ac95ffa8d983b293611e6"}, - {file = "pydantic_core-2.14.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:88e74ab0cdd84ad0614e2750f903bb0d610cc8af2cc17f72c28163acfcf372a4"}, - {file = "pydantic_core-2.14.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c339dabd8ee15f8259ee0f202679b6324926e5bc9e9a40bf981ce77c038553db"}, - {file = "pydantic_core-2.14.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3387277f1bf659caf1724e1afe8ee7dbc9952a82d90f858ebb931880216ea955"}, - {file = "pydantic_core-2.14.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ba6b6b3846cfc10fdb4c971980a954e49d447cd215ed5a77ec8190bc93dd7bc5"}, - {file = "pydantic_core-2.14.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ca61d858e4107ce5e1330a74724fe757fc7135190eb5ce5c9d0191729f033209"}, - {file = "pydantic_core-2.14.5-cp39-none-win32.whl", hash = "sha256:ec1e72d6412f7126eb7b2e3bfca42b15e6e389e1bc88ea0069d0cc1742f477c6"}, - {file = "pydantic_core-2.14.5-cp39-none-win_amd64.whl", hash = "sha256:c0b97ec434041827935044bbbe52b03d6018c2897349670ff8fe11ed24d1d4ab"}, - {file = "pydantic_core-2.14.5-pp310-pypy310_pp73-macosx_10_7_x86_64.whl", hash = "sha256:79e0a2cdbdc7af3f4aee3210b1172ab53d7ddb6a2d8c24119b5706e622b346d0"}, - {file = "pydantic_core-2.14.5-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:678265f7b14e138d9a541ddabbe033012a2953315739f8cfa6d754cc8063e8ca"}, - {file = "pydantic_core-2.14.5-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:95b15e855ae44f0c6341ceb74df61b606e11f1087e87dcb7482377374aac6abe"}, - {file = "pydantic_core-2.14.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:09b0e985fbaf13e6b06a56d21694d12ebca6ce5414b9211edf6f17738d82b0f8"}, - {file = "pydantic_core-2.14.5-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3ad873900297bb36e4b6b3f7029d88ff9829ecdc15d5cf20161775ce12306f8a"}, - {file = "pydantic_core-2.14.5-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:2d0ae0d8670164e10accbeb31d5ad45adb71292032d0fdb9079912907f0085f4"}, - {file = "pydantic_core-2.14.5-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:d37f8ec982ead9ba0a22a996129594938138a1503237b87318392a48882d50b7"}, - {file = "pydantic_core-2.14.5-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:35613015f0ba7e14c29ac6c2483a657ec740e5ac5758d993fdd5870b07a61d8b"}, - {file = "pydantic_core-2.14.5-pp37-pypy37_pp73-macosx_10_7_x86_64.whl", hash = "sha256:ab4ea451082e684198636565224bbb179575efc1658c48281b2c866bfd4ddf04"}, - {file = "pydantic_core-2.14.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ce601907e99ea5b4adb807ded3570ea62186b17f88e271569144e8cca4409c7"}, - {file = "pydantic_core-2.14.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fb2ed8b3fe4bf4506d6dab3b93b83bbc22237e230cba03866d561c3577517d18"}, - {file = "pydantic_core-2.14.5-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:70f947628e074bb2526ba1b151cee10e4c3b9670af4dbb4d73bc8a89445916b5"}, - {file = "pydantic_core-2.14.5-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4bc536201426451f06f044dfbf341c09f540b4ebdb9fd8d2c6164d733de5e634"}, - {file = "pydantic_core-2.14.5-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f4791cf0f8c3104ac668797d8c514afb3431bc3305f5638add0ba1a5a37e0d88"}, - {file = "pydantic_core-2.14.5-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:038c9f763e650712b899f983076ce783175397c848da04985658e7628cbe873b"}, - {file = "pydantic_core-2.14.5-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:27548e16c79702f1e03f5628589c6057c9ae17c95b4c449de3c66b589ead0520"}, - {file = "pydantic_core-2.14.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c97bee68898f3f4344eb02fec316db93d9700fb1e6a5b760ffa20d71d9a46ce3"}, - {file = "pydantic_core-2.14.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b9b759b77f5337b4ea024f03abc6464c9f35d9718de01cfe6bae9f2e139c397e"}, - {file = "pydantic_core-2.14.5-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:439c9afe34638ace43a49bf72d201e0ffc1a800295bed8420c2a9ca8d5e3dbb3"}, - {file = "pydantic_core-2.14.5-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:ba39688799094c75ea8a16a6b544eb57b5b0f3328697084f3f2790892510d144"}, - {file = "pydantic_core-2.14.5-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ccd4d5702bb90b84df13bd491be8d900b92016c5a455b7e14630ad7449eb03f8"}, - {file = "pydantic_core-2.14.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:81982d78a45d1e5396819bbb4ece1fadfe5f079335dd28c4ab3427cd95389944"}, - {file = "pydantic_core-2.14.5-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:7f8210297b04e53bc3da35db08b7302a6a1f4889c79173af69b72ec9754796b8"}, - {file = "pydantic_core-2.14.5-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:8c8a8812fe6f43a3a5b054af6ac2d7b8605c7bcab2804a8a7d68b53f3cd86e00"}, - {file = "pydantic_core-2.14.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:206ed23aecd67c71daf5c02c3cd19c0501b01ef3cbf7782db9e4e051426b3d0d"}, - {file = "pydantic_core-2.14.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c2027d05c8aebe61d898d4cffd774840a9cb82ed356ba47a90d99ad768f39789"}, - {file = "pydantic_core-2.14.5-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:40180930807ce806aa71eda5a5a5447abb6b6a3c0b4b3b1b1962651906484d68"}, - {file = "pydantic_core-2.14.5-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:615a0a4bff11c45eb3c1996ceed5bdaa2f7b432425253a7c2eed33bb86d80abc"}, - {file = "pydantic_core-2.14.5-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5e412d717366e0677ef767eac93566582518fe8be923361a5c204c1a62eaafe"}, - {file = "pydantic_core-2.14.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:513b07e99c0a267b1d954243845d8a833758a6726a3b5d8948306e3fe14675e3"}, - {file = "pydantic_core-2.14.5.tar.gz", hash = "sha256:6d30226dfc816dd0fdf120cae611dd2215117e4f9b124af8c60ab9093b6e8e71"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, + {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, + {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, + {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, + {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, + {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, + {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, + {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, + {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, + {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, + {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, + {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, + {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, + {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, ] [package.dependencies] @@ -1561,17 +1610,16 @@ typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" [[package]] name = "pygments" -version = "2.17.2" +version = "2.18.0" description = "Pygments is a syntax highlighting package written in Python." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "pygments-2.17.2-py3-none-any.whl", hash = "sha256:b27c2826c47d0f3219f29554824c30c5e8945175d888647acd804ddd04af846c"}, - {file = "pygments-2.17.2.tar.gz", hash = "sha256:da46cec9fd2de5be3a8a784f434e4c4ab670b4ff54d605c4c2717e9d49c4c367"}, + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, ] [package.extras] -plugins = ["importlib-metadata"] windows-terminal = ["colorama (>=0.4.6)"] [[package]] @@ -1591,17 +1639,17 @@ jsonasobj = ">=1.2.1" [[package]] name = "pymdown-extensions" -version = "10.5" +version = "10.10.1" description = "Extension pack for Python Markdown." optional = false python-versions = ">=3.8" files = [ - {file = "pymdown_extensions-10.5-py3-none-any.whl", hash = "sha256:1f0ca8bb5beff091315f793ee17683bc1390731f6ac4c5eb01e27464b80fe879"}, - {file = "pymdown_extensions-10.5.tar.gz", hash = "sha256:1b60f1e462adbec5a1ed79dac91f666c9c0d241fa294de1989f29d20096cfd0b"}, + {file = "pymdown_extensions-10.10.1-py3-none-any.whl", hash = "sha256:6c74ea6c2e2285186a241417480fc2d3cc52941b3ec2dced4014c84dc78c5493"}, + {file = "pymdown_extensions-10.10.1.tar.gz", hash = "sha256:ad277ee4739ced051c3b6328d22ce782358a3bec39bc6ca52815ccbf44f7acdc"}, ] [package.dependencies] -markdown = ">=3.5" +markdown = ">=3.6" pyyaml = "*" [package.extras] @@ -1609,13 +1657,13 @@ extra = ["pygments (>=2.12)"] [[package]] name = "pyparsing" -version = "3.1.1" +version = "3.1.4" description = "pyparsing module - Classes and methods to define and execute parsing grammars" optional = false python-versions = ">=3.6.8" files = [ - {file = "pyparsing-3.1.1-py3-none-any.whl", hash = "sha256:32c7c0b711493c72ff18a981d24f28aaf9c1fb7ed5e9667c9e84e3db623bdbfb"}, - {file = "pyparsing-3.1.1.tar.gz", hash = "sha256:ede28a1a32462f5a9705e07aea48001a08f7cf81a021585011deba701581a0db"}, + {file = "pyparsing-3.1.4-py3-none-any.whl", hash = "sha256:a6a7ee4235a3f944aa1fa2249307708f893fe5717dc603503c6c7969c070fb7c"}, + {file = "pyparsing-3.1.4.tar.gz", hash = "sha256:f86ec8d1a83f11977c9a6ea7598e8c27fc5cddfa5b07ea2241edbbde1d7bc032"}, ] [package.extras] @@ -1664,13 +1712,13 @@ shexjsg = ">=0.8.1" [[package]] name = "pystow" -version = "0.5.2" +version = "0.5.5" description = "Easily pick a place to store data for your python package." optional = false python-versions = ">=3.7" files = [ - {file = "pystow-0.5.2-py3-none-any.whl", hash = "sha256:c0faeb0fc854ede714be7949555f4d55ce40d8fd57f0ae1ff75e86158792299a"}, - {file = "pystow-0.5.2.tar.gz", hash = "sha256:d05d233299d61b50f53c7de220d990ec4c58e3a54d195d8449f0302563eb6de6"}, + {file = "pystow-0.5.5-py3-none-any.whl", hash = "sha256:ad70ed5076afde0472f37d14bed453060712f4259c9c32c38ce1faf5cb084868"}, + {file = "pystow-0.5.5.tar.gz", hash = "sha256:cc2bde486de03f1de1d7e8f6837e121277a461e47950539cb4d1ef51690eade7"}, ] [package.dependencies] @@ -1680,7 +1728,7 @@ tqdm = "*" [package.extras] aws = ["boto3"] -docs = ["sphinx", "sphinx-autodoc-typehints", "sphinx-automodapi", "sphinx-click", "sphinx-rtd-theme"] +docs = ["sphinx (<8.0)", "sphinx-autodoc-typehints", "sphinx-automodapi", "sphinx-click", "sphinx-rtd-theme"] pandas = ["pandas"] rdf = ["rdflib"] tests = ["coverage", "pytest", "requests-file"] @@ -1688,13 +1736,13 @@ xml = ["lxml"] [[package]] name = "pytest" -version = "8.1.1" +version = "8.3.3" description = "pytest: simple powerful testing with Python" optional = false python-versions = ">=3.8" files = [ - {file = "pytest-8.1.1-py3-none-any.whl", hash = "sha256:2a8386cfc11fa9d2c50ee7b2a57e7d898ef90470a7a34c4b949ff59662bb78b7"}, - {file = "pytest-8.1.1.tar.gz", hash = "sha256:ac978141a75948948817d360297b7aae0fcb9d6ff6bc9ec6d514b85d5a65c044"}, + {file = "pytest-8.3.3-py3-none-any.whl", hash = "sha256:a6853c7375b2663155079443d2e45de913a911a11d669df02a50814944db57b2"}, + {file = "pytest-8.3.3.tar.gz", hash = "sha256:70b98107bd648308a7952b06e6ca9a50bc660be218d53c257cc1fc94fda10181"}, ] [package.dependencies] @@ -1702,11 +1750,11 @@ colorama = {version = "*", markers = "sys_platform == \"win32\""} exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} iniconfig = "*" packaging = "*" -pluggy = ">=1.4,<2.0" +pluggy = ">=1.5,<2" tomli = {version = ">=1", markers = "python_version < \"3.11\""} [package.extras] -testing = ["argcomplete", "attrs (>=19.2)", "hypothesis (>=3.56)", "mock", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] +dev = ["argcomplete", "attrs (>=19.2)", "hypothesis (>=3.56)", "mock", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] [[package]] name = "pytest-logging" @@ -1723,13 +1771,13 @@ pytest = ">=2.8.1" [[package]] name = "python-dateutil" -version = "2.8.2" +version = "2.9.0.post0" description = "Extensions to the standard Python datetime module" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" files = [ - {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, - {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, ] [package.dependencies] @@ -1751,62 +1799,64 @@ sortedcontainers = "*" [[package]] name = "pyyaml" -version = "6.0.1" +version = "6.0.2" description = "YAML parser and emitter for Python" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, - {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, - {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"}, - {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, - {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, - {file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"}, - {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, - {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, - {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, - {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, - {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"}, - {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, - {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, - {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, - {file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"}, - {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, - {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, - {file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"}, - {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, - {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, - {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, ] [[package]] @@ -1875,13 +1925,13 @@ rdflib-jsonld = "0.6.1" [[package]] name = "referencing" -version = "0.31.0" +version = "0.35.1" description = "JSON Referencing + Python" optional = false python-versions = ">=3.8" files = [ - {file = "referencing-0.31.0-py3-none-any.whl", hash = "sha256:381b11e53dd93babb55696c71cf42aef2d36b8a150c49bf0bc301e36d536c882"}, - {file = "referencing-0.31.0.tar.gz", hash = "sha256:cc28f2c88fbe7b961a7817a0abc034c09a1e36358f82fedb4ffdf29a25398863"}, + {file = "referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de"}, + {file = "referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c"}, ] [package.dependencies] @@ -1890,110 +1940,116 @@ rpds-py = ">=0.7.0" [[package]] name = "regex" -version = "2023.10.3" +version = "2024.9.11" description = "Alternative regular expression module, to replace re." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "regex-2023.10.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4c34d4f73ea738223a094d8e0ffd6d2c1a1b4c175da34d6b0de3d8d69bee6bcc"}, - {file = "regex-2023.10.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a8f4e49fc3ce020f65411432183e6775f24e02dff617281094ba6ab079ef0915"}, - {file = "regex-2023.10.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4cd1bccf99d3ef1ab6ba835308ad85be040e6a11b0977ef7ea8c8005f01a3c29"}, - {file = "regex-2023.10.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:81dce2ddc9f6e8f543d94b05d56e70d03a0774d32f6cca53e978dc01e4fc75b8"}, - {file = "regex-2023.10.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c6b4d23c04831e3ab61717a707a5d763b300213db49ca680edf8bf13ab5d91b"}, - {file = "regex-2023.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c15ad0aee158a15e17e0495e1e18741573d04eb6da06d8b84af726cfc1ed02ee"}, - {file = "regex-2023.10.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6239d4e2e0b52c8bd38c51b760cd870069f0bdf99700a62cd509d7a031749a55"}, - {file = "regex-2023.10.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4a8bf76e3182797c6b1afa5b822d1d5802ff30284abe4599e1247be4fd6b03be"}, - {file = "regex-2023.10.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d9c727bbcf0065cbb20f39d2b4f932f8fa1631c3e01fcedc979bd4f51fe051c5"}, - {file = "regex-2023.10.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:3ccf2716add72f80714b9a63899b67fa711b654be3fcdd34fa391d2d274ce767"}, - {file = "regex-2023.10.3-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:107ac60d1bfdc3edb53be75e2a52aff7481b92817cfdddd9b4519ccf0e54a6ff"}, - {file = "regex-2023.10.3-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:00ba3c9818e33f1fa974693fb55d24cdc8ebafcb2e4207680669d8f8d7cca79a"}, - {file = "regex-2023.10.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f0a47efb1dbef13af9c9a54a94a0b814902e547b7f21acb29434504d18f36e3a"}, - {file = "regex-2023.10.3-cp310-cp310-win32.whl", hash = "sha256:36362386b813fa6c9146da6149a001b7bd063dabc4d49522a1f7aa65b725c7ec"}, - {file = "regex-2023.10.3-cp310-cp310-win_amd64.whl", hash = "sha256:c65a3b5330b54103e7d21cac3f6bf3900d46f6d50138d73343d9e5b2900b2353"}, - {file = "regex-2023.10.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:90a79bce019c442604662d17bf69df99090e24cdc6ad95b18b6725c2988a490e"}, - {file = "regex-2023.10.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c7964c2183c3e6cce3f497e3a9f49d182e969f2dc3aeeadfa18945ff7bdd7051"}, - {file = "regex-2023.10.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ef80829117a8061f974b2fda8ec799717242353bff55f8a29411794d635d964"}, - {file = "regex-2023.10.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5addc9d0209a9afca5fc070f93b726bf7003bd63a427f65ef797a931782e7edc"}, - {file = "regex-2023.10.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c148bec483cc4b421562b4bcedb8e28a3b84fcc8f0aa4418e10898f3c2c0eb9b"}, - {file = "regex-2023.10.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d1f21af4c1539051049796a0f50aa342f9a27cde57318f2fc41ed50b0dbc4ac"}, - {file = "regex-2023.10.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0b9ac09853b2a3e0d0082104036579809679e7715671cfbf89d83c1cb2a30f58"}, - {file = "regex-2023.10.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ebedc192abbc7fd13c5ee800e83a6df252bec691eb2c4bedc9f8b2e2903f5e2a"}, - {file = "regex-2023.10.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:d8a993c0a0ffd5f2d3bda23d0cd75e7086736f8f8268de8a82fbc4bd0ac6791e"}, - {file = "regex-2023.10.3-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:be6b7b8d42d3090b6c80793524fa66c57ad7ee3fe9722b258aec6d0672543fd0"}, - {file = "regex-2023.10.3-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4023e2efc35a30e66e938de5aef42b520c20e7eda7bb5fb12c35e5d09a4c43f6"}, - {file = "regex-2023.10.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0d47840dc05e0ba04fe2e26f15126de7c755496d5a8aae4a08bda4dd8d646c54"}, - {file = "regex-2023.10.3-cp311-cp311-win32.whl", hash = "sha256:9145f092b5d1977ec8c0ab46e7b3381b2fd069957b9862a43bd383e5c01d18c2"}, - {file = "regex-2023.10.3-cp311-cp311-win_amd64.whl", hash = "sha256:b6104f9a46bd8743e4f738afef69b153c4b8b592d35ae46db07fc28ae3d5fb7c"}, - {file = "regex-2023.10.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:bff507ae210371d4b1fe316d03433ac099f184d570a1a611e541923f78f05037"}, - {file = "regex-2023.10.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:be5e22bbb67924dea15039c3282fa4cc6cdfbe0cbbd1c0515f9223186fc2ec5f"}, - {file = "regex-2023.10.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a992f702c9be9c72fa46f01ca6e18d131906a7180950958f766c2aa294d4b41"}, - {file = "regex-2023.10.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7434a61b158be563c1362d9071358f8ab91b8d928728cd2882af060481244c9e"}, - {file = "regex-2023.10.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c2169b2dcabf4e608416f7f9468737583ce5f0a6e8677c4efbf795ce81109d7c"}, - {file = "regex-2023.10.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9e908ef5889cda4de038892b9accc36d33d72fb3e12c747e2799a0e806ec841"}, - {file = "regex-2023.10.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:12bd4bc2c632742c7ce20db48e0d99afdc05e03f0b4c1af90542e05b809a03d9"}, - {file = "regex-2023.10.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bc72c231f5449d86d6c7d9cc7cd819b6eb30134bb770b8cfdc0765e48ef9c420"}, - {file = "regex-2023.10.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bce8814b076f0ce5766dc87d5a056b0e9437b8e0cd351b9a6c4e1134a7dfbda9"}, - {file = "regex-2023.10.3-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:ba7cd6dc4d585ea544c1412019921570ebd8a597fabf475acc4528210d7c4a6f"}, - {file = "regex-2023.10.3-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b0c7d2f698e83f15228ba41c135501cfe7d5740181d5903e250e47f617eb4292"}, - {file = "regex-2023.10.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5a8f91c64f390ecee09ff793319f30a0f32492e99f5dc1c72bc361f23ccd0a9a"}, - {file = "regex-2023.10.3-cp312-cp312-win32.whl", hash = "sha256:ad08a69728ff3c79866d729b095872afe1e0557251da4abb2c5faff15a91d19a"}, - {file = "regex-2023.10.3-cp312-cp312-win_amd64.whl", hash = "sha256:39cdf8d141d6d44e8d5a12a8569d5a227f645c87df4f92179bd06e2e2705e76b"}, - {file = "regex-2023.10.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:4a3ee019a9befe84fa3e917a2dd378807e423d013377a884c1970a3c2792d293"}, - {file = "regex-2023.10.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76066d7ff61ba6bf3cb5efe2428fc82aac91802844c022d849a1f0f53820502d"}, - {file = "regex-2023.10.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bfe50b61bab1b1ec260fa7cd91106fa9fece57e6beba05630afe27c71259c59b"}, - {file = "regex-2023.10.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9fd88f373cb71e6b59b7fa597e47e518282455c2734fd4306a05ca219a1991b0"}, - {file = "regex-2023.10.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b3ab05a182c7937fb374f7e946f04fb23a0c0699c0450e9fb02ef567412d2fa3"}, - {file = "regex-2023.10.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dac37cf08fcf2094159922edc7a2784cfcc5c70f8354469f79ed085f0328ebdf"}, - {file = "regex-2023.10.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:e54ddd0bb8fb626aa1f9ba7b36629564544954fff9669b15da3610c22b9a0991"}, - {file = "regex-2023.10.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:3367007ad1951fde612bf65b0dffc8fd681a4ab98ac86957d16491400d661302"}, - {file = "regex-2023.10.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:16f8740eb6dbacc7113e3097b0a36065a02e37b47c936b551805d40340fb9971"}, - {file = "regex-2023.10.3-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:f4f2ca6df64cbdd27f27b34f35adb640b5d2d77264228554e68deda54456eb11"}, - {file = "regex-2023.10.3-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:39807cbcbe406efca2a233884e169d056c35aa7e9f343d4e78665246a332f597"}, - {file = "regex-2023.10.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:7eece6fbd3eae4a92d7c748ae825cbc1ee41a89bb1c3db05b5578ed3cfcfd7cb"}, - {file = "regex-2023.10.3-cp37-cp37m-win32.whl", hash = "sha256:ce615c92d90df8373d9e13acddd154152645c0dc060871abf6bd43809673d20a"}, - {file = "regex-2023.10.3-cp37-cp37m-win_amd64.whl", hash = "sha256:0f649fa32fe734c4abdfd4edbb8381c74abf5f34bc0b3271ce687b23729299ed"}, - {file = "regex-2023.10.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9b98b7681a9437262947f41c7fac567c7e1f6eddd94b0483596d320092004533"}, - {file = "regex-2023.10.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:91dc1d531f80c862441d7b66c4505cd6ea9d312f01fb2f4654f40c6fdf5cc37a"}, - {file = "regex-2023.10.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82fcc1f1cc3ff1ab8a57ba619b149b907072e750815c5ba63e7aa2e1163384a4"}, - {file = "regex-2023.10.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7979b834ec7a33aafae34a90aad9f914c41fd6eaa8474e66953f3f6f7cbd4368"}, - {file = "regex-2023.10.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ef71561f82a89af6cfcbee47f0fabfdb6e63788a9258e913955d89fdd96902ab"}, - {file = "regex-2023.10.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd829712de97753367153ed84f2de752b86cd1f7a88b55a3a775eb52eafe8a94"}, - {file = "regex-2023.10.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:00e871d83a45eee2f8688d7e6849609c2ca2a04a6d48fba3dff4deef35d14f07"}, - {file = "regex-2023.10.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:706e7b739fdd17cb89e1fbf712d9dc21311fc2333f6d435eac2d4ee81985098c"}, - {file = "regex-2023.10.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:cc3f1c053b73f20c7ad88b0d1d23be7e7b3901229ce89f5000a8399746a6e039"}, - {file = "regex-2023.10.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6f85739e80d13644b981a88f529d79c5bdf646b460ba190bffcaf6d57b2a9863"}, - {file = "regex-2023.10.3-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:741ba2f511cc9626b7561a440f87d658aabb3d6b744a86a3c025f866b4d19e7f"}, - {file = "regex-2023.10.3-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:e77c90ab5997e85901da85131fd36acd0ed2221368199b65f0d11bca44549711"}, - {file = "regex-2023.10.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:979c24cbefaf2420c4e377ecd1f165ea08cc3d1fbb44bdc51bccbbf7c66a2cb4"}, - {file = "regex-2023.10.3-cp38-cp38-win32.whl", hash = "sha256:58837f9d221744d4c92d2cf7201c6acd19623b50c643b56992cbd2b745485d3d"}, - {file = "regex-2023.10.3-cp38-cp38-win_amd64.whl", hash = "sha256:c55853684fe08d4897c37dfc5faeff70607a5f1806c8be148f1695be4a63414b"}, - {file = "regex-2023.10.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2c54e23836650bdf2c18222c87f6f840d4943944146ca479858404fedeb9f9af"}, - {file = "regex-2023.10.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:69c0771ca5653c7d4b65203cbfc5e66db9375f1078689459fe196fe08b7b4930"}, - {file = "regex-2023.10.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ac965a998e1388e6ff2e9781f499ad1eaa41e962a40d11c7823c9952c77123e"}, - {file = "regex-2023.10.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1c0e8fae5b27caa34177bdfa5a960c46ff2f78ee2d45c6db15ae3f64ecadde14"}, - {file = "regex-2023.10.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6c56c3d47da04f921b73ff9415fbaa939f684d47293f071aa9cbb13c94afc17d"}, - {file = "regex-2023.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ef1e014eed78ab650bef9a6a9cbe50b052c0aebe553fb2881e0453717573f52"}, - {file = "regex-2023.10.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d29338556a59423d9ff7b6eb0cb89ead2b0875e08fe522f3e068b955c3e7b59b"}, - {file = "regex-2023.10.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9c6d0ced3c06d0f183b73d3c5920727268d2201aa0fe6d55c60d68c792ff3588"}, - {file = "regex-2023.10.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:994645a46c6a740ee8ce8df7911d4aee458d9b1bc5639bc968226763d07f00fa"}, - {file = "regex-2023.10.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:66e2fe786ef28da2b28e222c89502b2af984858091675044d93cb50e6f46d7af"}, - {file = "regex-2023.10.3-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:11175910f62b2b8c055f2b089e0fedd694fe2be3941b3e2633653bc51064c528"}, - {file = "regex-2023.10.3-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:06e9abc0e4c9ab4779c74ad99c3fc10d3967d03114449acc2c2762ad4472b8ca"}, - {file = "regex-2023.10.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:fb02e4257376ae25c6dd95a5aec377f9b18c09be6ebdefa7ad209b9137b73d48"}, - {file = "regex-2023.10.3-cp39-cp39-win32.whl", hash = "sha256:3b2c3502603fab52d7619b882c25a6850b766ebd1b18de3df23b2f939360e1bd"}, - {file = "regex-2023.10.3-cp39-cp39-win_amd64.whl", hash = "sha256:adbccd17dcaff65704c856bd29951c58a1bd4b2b0f8ad6b826dbd543fe740988"}, - {file = "regex-2023.10.3.tar.gz", hash = "sha256:3fef4f844d2290ee0ba57addcec17eec9e3df73f10a2748485dfd6a3a188cc0f"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1494fa8725c285a81d01dc8c06b55287a1ee5e0e382d8413adc0a9197aac6408"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0e12c481ad92d129c78f13a2a3662317e46ee7ef96c94fd332e1c29131875b7d"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:16e13a7929791ac1216afde26f712802e3df7bf0360b32e4914dca3ab8baeea5"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:46989629904bad940bbec2106528140a218b4a36bb3042d8406980be1941429c"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a906ed5e47a0ce5f04b2c981af1c9acf9e8696066900bf03b9d7879a6f679fc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e9a091b0550b3b0207784a7d6d0f1a00d1d1c8a11699c1a4d93db3fbefc3ad35"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ddcd9a179c0a6fa8add279a4444015acddcd7f232a49071ae57fa6e278f1f71"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b41e1adc61fa347662b09398e31ad446afadff932a24807d3ceb955ed865cc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ced479f601cd2f8ca1fd7b23925a7e0ad512a56d6e9476f79b8f381d9d37090a"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:635a1d96665f84b292e401c3d62775851aedc31d4f8784117b3c68c4fcd4118d"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c0256beda696edcf7d97ef16b2a33a8e5a875affd6fa6567b54f7c577b30a137"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:3ce4f1185db3fbde8ed8aa223fc9620f276c58de8b0d4f8cc86fd1360829edb6"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:09d77559e80dcc9d24570da3745ab859a9cf91953062e4ab126ba9d5993688ca"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7a22ccefd4db3f12b526eccb129390942fe874a3a9fdbdd24cf55773a1faab1a"}, + {file = "regex-2024.9.11-cp310-cp310-win32.whl", hash = "sha256:f745ec09bc1b0bd15cfc73df6fa4f726dcc26bb16c23a03f9e3367d357eeedd0"}, + {file = "regex-2024.9.11-cp310-cp310-win_amd64.whl", hash = "sha256:01c2acb51f8a7d6494c8c5eafe3d8e06d76563d8a8a4643b37e9b2dd8a2ff623"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2cce2449e5927a0bf084d346da6cd5eb016b2beca10d0013ab50e3c226ffc0df"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3b37fa423beefa44919e009745ccbf353d8c981516e807995b2bd11c2c77d268"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:64ce2799bd75039b480cc0360907c4fb2f50022f030bf9e7a8705b636e408fad"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4cc92bb6db56ab0c1cbd17294e14f5e9224f0cc6521167ef388332604e92679"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d05ac6fa06959c4172eccd99a222e1fbf17b5670c4d596cb1e5cde99600674c4"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:040562757795eeea356394a7fb13076ad4f99d3c62ab0f8bdfb21f99a1f85664"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6113c008a7780792efc80f9dfe10ba0cd043cbf8dc9a76ef757850f51b4edc50"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e5fb5f77c8745a60105403a774fe2c1759b71d3e7b4ca237a5e67ad066c7199"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:54d9ff35d4515debf14bc27f1e3b38bfc453eff3220f5bce159642fa762fe5d4"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:df5cbb1fbc74a8305b6065d4ade43b993be03dbe0f8b30032cced0d7740994bd"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:7fb89ee5d106e4a7a51bce305ac4efb981536301895f7bdcf93ec92ae0d91c7f"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:a738b937d512b30bf75995c0159c0ddf9eec0775c9d72ac0202076c72f24aa96"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e28f9faeb14b6f23ac55bfbbfd3643f5c7c18ede093977f1df249f73fd22c7b1"}, + {file = "regex-2024.9.11-cp311-cp311-win32.whl", hash = "sha256:18e707ce6c92d7282dfce370cd205098384b8ee21544e7cb29b8aab955b66fa9"}, + {file = "regex-2024.9.11-cp311-cp311-win_amd64.whl", hash = "sha256:313ea15e5ff2a8cbbad96ccef6be638393041b0a7863183c2d31e0c6116688cf"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b0d0a6c64fcc4ef9c69bd5b3b3626cc3776520a1637d8abaa62b9edc147a58f7"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:49b0e06786ea663f933f3710a51e9385ce0cba0ea56b67107fd841a55d56a231"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5b513b6997a0b2f10e4fd3a1313568e373926e8c252bd76c960f96fd039cd28d"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee439691d8c23e76f9802c42a95cfeebf9d47cf4ffd06f18489122dbb0a7ad64"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a8f877c89719d759e52783f7fe6e1c67121076b87b40542966c02de5503ace42"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23b30c62d0f16827f2ae9f2bb87619bc4fba2044911e2e6c2eb1af0161cdb766"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85ab7824093d8f10d44330fe1e6493f756f252d145323dd17ab6b48733ff6c0a"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8dee5b4810a89447151999428fe096977346cf2f29f4d5e29609d2e19e0199c9"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:98eeee2f2e63edae2181c886d7911ce502e1292794f4c5ee71e60e23e8d26b5d"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:57fdd2e0b2694ce6fc2e5ccf189789c3e2962916fb38779d3e3521ff8fe7a822"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:d552c78411f60b1fdaafd117a1fca2f02e562e309223b9d44b7de8be451ec5e0"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a0b2b80321c2ed3fcf0385ec9e51a12253c50f146fddb2abbb10f033fe3d049a"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:18406efb2f5a0e57e3a5881cd9354c1512d3bb4f5c45d96d110a66114d84d23a"}, + {file = "regex-2024.9.11-cp312-cp312-win32.whl", hash = "sha256:e464b467f1588e2c42d26814231edecbcfe77f5ac414d92cbf4e7b55b2c2a776"}, + {file = "regex-2024.9.11-cp312-cp312-win_amd64.whl", hash = "sha256:9e8719792ca63c6b8340380352c24dcb8cd7ec49dae36e963742a275dfae6009"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:c157bb447303070f256e084668b702073db99bbb61d44f85d811025fcf38f784"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:4db21ece84dfeefc5d8a3863f101995de646c6cb0536952c321a2650aa202c36"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:220e92a30b426daf23bb67a7962900ed4613589bab80382be09b48896d211e92"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb1ae19e64c14c7ec1995f40bd932448713d3c73509e82d8cd7744dc00e29e86"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f47cd43a5bfa48f86925fe26fbdd0a488ff15b62468abb5d2a1e092a4fb10e85"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9d4a76b96f398697fe01117093613166e6aa8195d63f1b4ec3f21ab637632963"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ea51dcc0835eea2ea31d66456210a4e01a076d820e9039b04ae8d17ac11dee6"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7aaa315101c6567a9a45d2839322c51c8d6e81f67683d529512f5bcfb99c802"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c57d08ad67aba97af57a7263c2d9006d5c404d721c5f7542f077f109ec2a4a29"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:f8404bf61298bb6f8224bb9176c1424548ee1181130818fcd2cbffddc768bed8"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:dd4490a33eb909ef5078ab20f5f000087afa2a4daa27b4c072ccb3cb3050ad84"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:eee9130eaad130649fd73e5cd92f60e55708952260ede70da64de420cdcad554"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6a2644a93da36c784e546de579ec1806bfd2763ef47babc1b03d765fe560c9f8"}, + {file = "regex-2024.9.11-cp313-cp313-win32.whl", hash = "sha256:e997fd30430c57138adc06bba4c7c2968fb13d101e57dd5bb9355bf8ce3fa7e8"}, + {file = "regex-2024.9.11-cp313-cp313-win_amd64.whl", hash = "sha256:042c55879cfeb21a8adacc84ea347721d3d83a159da6acdf1116859e2427c43f"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:35f4a6f96aa6cb3f2f7247027b07b15a374f0d5b912c0001418d1d55024d5cb4"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:55b96e7ce3a69a8449a66984c268062fbaa0d8ae437b285428e12797baefce7e"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cb130fccd1a37ed894824b8c046321540263013da72745d755f2d35114b81a60"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:323c1f04be6b2968944d730e5c2091c8c89767903ecaa135203eec4565ed2b2b"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be1c8ed48c4c4065ecb19d882a0ce1afe0745dfad8ce48c49586b90a55f02366"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b5b029322e6e7b94fff16cd120ab35a253236a5f99a79fb04fda7ae71ca20ae8"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6fff13ef6b5f29221d6904aa816c34701462956aa72a77f1f151a8ec4f56aeb"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:587d4af3979376652010e400accc30404e6c16b7df574048ab1f581af82065e4"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:079400a8269544b955ffa9e31f186f01d96829110a3bf79dc338e9910f794fca"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:f9268774428ec173654985ce55fc6caf4c6d11ade0f6f914d48ef4719eb05ebb"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:23f9985c8784e544d53fc2930fc1ac1a7319f5d5332d228437acc9f418f2f168"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:ae2941333154baff9838e88aa71c1d84f4438189ecc6021a12c7573728b5838e"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:e93f1c331ca8e86fe877a48ad64e77882c0c4da0097f2212873a69bbfea95d0c"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:846bc79ee753acf93aef4184c040d709940c9d001029ceb7b7a52747b80ed2dd"}, + {file = "regex-2024.9.11-cp38-cp38-win32.whl", hash = "sha256:c94bb0a9f1db10a1d16c00880bdebd5f9faf267273b8f5bd1878126e0fbde771"}, + {file = "regex-2024.9.11-cp38-cp38-win_amd64.whl", hash = "sha256:2b08fce89fbd45664d3df6ad93e554b6c16933ffa9d55cb7e01182baaf971508"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:07f45f287469039ffc2c53caf6803cd506eb5f5f637f1d4acb37a738f71dd066"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4838e24ee015101d9f901988001038f7f0d90dc0c3b115541a1365fb439add62"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6edd623bae6a737f10ce853ea076f56f507fd7726bee96a41ee3d68d347e4d16"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c69ada171c2d0e97a4b5aa78fbb835e0ffbb6b13fc5da968c09811346564f0d3"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02087ea0a03b4af1ed6ebab2c54d7118127fee8d71b26398e8e4b05b78963199"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:69dee6a020693d12a3cf892aba4808fe168d2a4cef368eb9bf74f5398bfd4ee8"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:297f54910247508e6e5cae669f2bc308985c60540a4edd1c77203ef19bfa63ca"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ecea58b43a67b1b79805f1a0255730edaf5191ecef84dbc4cc85eb30bc8b63b9"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:eab4bb380f15e189d1313195b062a6aa908f5bd687a0ceccd47c8211e9cf0d4a"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0cbff728659ce4bbf4c30b2a1be040faafaa9eca6ecde40aaff86f7889f4ab39"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:54c4a097b8bc5bb0dfc83ae498061d53ad7b5762e00f4adaa23bee22b012e6ba"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:73d6d2f64f4d894c96626a75578b0bf7d9e56dcda8c3d037a2118fdfe9b1c664"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:e53b5fbab5d675aec9f0c501274c467c0f9a5d23696cfc94247e1fb56501ed89"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0ffbcf9221e04502fc35e54d1ce9567541979c3fdfb93d2c554f0ca583a19b35"}, + {file = "regex-2024.9.11-cp39-cp39-win32.whl", hash = "sha256:e4c22e1ac1f1ec1e09f72e6c44d8f2244173db7eb9629cc3a346a8d7ccc31142"}, + {file = "regex-2024.9.11-cp39-cp39-win_amd64.whl", hash = "sha256:faa3c142464efec496967359ca99696c896c591c56c53506bac1ad465f66e919"}, + {file = "regex-2024.9.11.tar.gz", hash = "sha256:6c188c307e8433bcb63dc1915022deb553b4203a70722fc542c363bf120a01fd"}, ] [[package]] name = "requests" -version = "2.32.0" +version = "2.32.3" description = "Python HTTP for Humans." optional = false python-versions = ">=3.8" files = [ - {file = "requests-2.32.0-py3-none-any.whl", hash = "sha256:f2c3881dddb70d056c5bd7600a4fae312b2a300e39be6a118d30b90bd27262b5"}, - {file = "requests-2.32.0.tar.gz", hash = "sha256:fa5490319474c82ef1d2c9bc459d3652e3ae4ef4c4ebdd18a21145a47ca4b6b8"}, + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, ] [package.dependencies] @@ -2008,13 +2064,13 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "requests-oauthlib" -version = "1.3.1" +version = "2.0.0" description = "OAuthlib authentication support for Requests." optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +python-versions = ">=3.4" files = [ - {file = "requests-oauthlib-1.3.1.tar.gz", hash = "sha256:75beac4a47881eeb94d5ea5d6ad31ef88856affe2332b9aafb52c6452ccf0d7a"}, - {file = "requests_oauthlib-1.3.1-py2.py3-none-any.whl", hash = "sha256:2577c501a2fb8d05a304c09d090d6e47c306fef15809d102b327cf8364bddab5"}, + {file = "requests-oauthlib-2.0.0.tar.gz", hash = "sha256:b3dffaebd884d8cd778494369603a9e7b58d29111bf6b41bdc2dcd87203af4e9"}, + {file = "requests_oauthlib-2.0.0-py2.py3-none-any.whl", hash = "sha256:7dd8a5c40426b779b0868c404bdef9768deccf22749cde15852df527e6269b36"}, ] [package.dependencies] @@ -2051,110 +2107,114 @@ files = [ [[package]] name = "rpds-py" -version = "0.13.1" +version = "0.20.0" description = "Python bindings to Rust's persistent data structures (rpds)" optional = false python-versions = ">=3.8" files = [ - {file = "rpds_py-0.13.1-cp310-cp310-macosx_10_7_x86_64.whl", hash = "sha256:83feb0f682d75a09ddc11aa37ba5c07dd9b824b22915207f6176ea458474ff75"}, - {file = "rpds_py-0.13.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fa84bbe22ffa108f91631935c28a623001e335d66e393438258501e618fb0dde"}, - {file = "rpds_py-0.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e04f8c76b8d5c70695b4e8f1d0b391d8ef91df00ef488c6c1ffb910176459bc6"}, - {file = "rpds_py-0.13.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:032c242a595629aacace44128f9795110513ad27217b091e834edec2fb09e800"}, - {file = "rpds_py-0.13.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:91276caef95556faeb4b8f09fe4439670d3d6206fee78d47ddb6e6de837f0b4d"}, - {file = "rpds_py-0.13.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d22f2cb82e0b40e427a74a93c9a4231335bbc548aed79955dde0b64ea7f88146"}, - {file = "rpds_py-0.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63c9e2794329ef070844ff9bfc012004aeddc0468dc26970953709723f76c8a5"}, - {file = "rpds_py-0.13.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c797ea56f36c6f248656f0223b11307fdf4a1886f3555eba371f34152b07677f"}, - {file = "rpds_py-0.13.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:82dbcd6463e580bcfb7561cece35046aaabeac5a9ddb775020160b14e6c58a5d"}, - {file = "rpds_py-0.13.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:736817dbbbd030a69a1faf5413a319976c9c8ba8cdcfa98c022d3b6b2e01eca6"}, - {file = "rpds_py-0.13.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:1f36a1e80ef4ed1996445698fd91e0d3e54738bf597c9995118b92da537d7a28"}, - {file = "rpds_py-0.13.1-cp310-none-win32.whl", hash = "sha256:4f13d3f6585bd07657a603780e99beda96a36c86acaba841f131e81393958336"}, - {file = "rpds_py-0.13.1-cp310-none-win_amd64.whl", hash = "sha256:545e94c84575057d3d5c62634611858dac859702b1519b6ffc58eca7fb1adfcf"}, - {file = "rpds_py-0.13.1-cp311-cp311-macosx_10_7_x86_64.whl", hash = "sha256:6bfe72b249264cc1ff2f3629be240d7d2fdc778d9d298087cdec8524c91cd11f"}, - {file = "rpds_py-0.13.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:edc91c50e17f5cd945d821f0f1af830522dba0c10267c3aab186dc3dbaab8def"}, - {file = "rpds_py-0.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2eca04a365be380ca1f8fa48b334462e19e3382c0bb7386444d8ca43aa01c481"}, - {file = "rpds_py-0.13.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:3e3ac5b602fea378243f993d8b707189f9061e55ebb4e56cb9fdef8166060f28"}, - {file = "rpds_py-0.13.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dfb5d2ab183c0efe5e7b8917e4eaa2e837aacafad8a69b89aa6bc81550eed857"}, - {file = "rpds_py-0.13.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d9793d46d3e6522ae58e9321032827c9c0df1e56cbe5d3de965facb311aed6aa"}, - {file = "rpds_py-0.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9cd935c0220d012a27c20135c140f9cdcbc6249d5954345c81bfb714071b985c"}, - {file = "rpds_py-0.13.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:37b08df45f02ff1866043b95096cbe91ac99de05936dd09d6611987a82a3306a"}, - {file = "rpds_py-0.13.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:ad666a904212aa9a6c77da7dce9d5170008cda76b7776e6731928b3f8a0d40fa"}, - {file = "rpds_py-0.13.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8a6ad8429340e0a4de89353447c6441329def3632e7b2293a7d6e873217d3c2b"}, - {file = "rpds_py-0.13.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:7c40851b659d958c5245c1236e34f0d065cc53dca8d978b49a032c8e0adfda6e"}, - {file = "rpds_py-0.13.1-cp311-none-win32.whl", hash = "sha256:4145172ab59b6c27695db6d78d040795f635cba732cead19c78cede74800949a"}, - {file = "rpds_py-0.13.1-cp311-none-win_amd64.whl", hash = "sha256:46a07a258bda12270de02b34c4884f200f864bba3dcd6e3a37fef36a168b859d"}, - {file = "rpds_py-0.13.1-cp312-cp312-macosx_10_7_x86_64.whl", hash = "sha256:ba4432301ad7eeb1b00848cf46fae0e5fecfd18a8cb5fdcf856c67985f79ecc7"}, - {file = "rpds_py-0.13.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d22e0660de24bd8e9ac82f4230a22a5fe4e397265709289d61d5fb333839ba50"}, - {file = "rpds_py-0.13.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76a8374b294e4ccb39ccaf11d39a0537ed107534139c00b4393ca3b542cc66e5"}, - {file = "rpds_py-0.13.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7d152ec7bb431040af2500e01436c9aa0d993f243346f0594a15755016bf0be1"}, - {file = "rpds_py-0.13.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:74a2044b870df7c9360bb3ce7e12f9ddf8e72e49cd3a353a1528cbf166ad2383"}, - {file = "rpds_py-0.13.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:960e7e460fda2d0af18c75585bbe0c99f90b8f09963844618a621b804f8c3abe"}, - {file = "rpds_py-0.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37f79f4f1f06cc96151f4a187528c3fd4a7e1065538a4af9eb68c642365957f7"}, - {file = "rpds_py-0.13.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cd4ea56c9542ad0091dfdef3e8572ae7a746e1e91eb56c9e08b8d0808b40f1d1"}, - {file = "rpds_py-0.13.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:0290712eb5603a725769b5d857f7cf15cf6ca93dda3128065bbafe6fdb709beb"}, - {file = "rpds_py-0.13.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0b70c1f800059c92479dc94dda41288fd6607f741f9b1b8f89a21a86428f6383"}, - {file = "rpds_py-0.13.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3dd5fb7737224e1497c886fb3ca681c15d9c00c76171f53b3c3cc8d16ccfa7fb"}, - {file = "rpds_py-0.13.1-cp312-none-win32.whl", hash = "sha256:74be3b215a5695690a0f1a9f68b1d1c93f8caad52e23242fcb8ba56aaf060281"}, - {file = "rpds_py-0.13.1-cp312-none-win_amd64.whl", hash = "sha256:f47eef55297799956464efc00c74ae55c48a7b68236856d56183fe1ddf866205"}, - {file = "rpds_py-0.13.1-cp38-cp38-macosx_10_7_x86_64.whl", hash = "sha256:e4a45ba34f904062c63049a760790c6a2fa7a4cc4bd160d8af243b12371aaa05"}, - {file = "rpds_py-0.13.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:20147996376be452cd82cd6c17701daba69a849dc143270fa10fe067bb34562a"}, - {file = "rpds_py-0.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42b9535aa22ab023704cfc6533e968f7e420affe802d85e956d8a7b4c0b0b5ea"}, - {file = "rpds_py-0.13.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d4fa1eeb9bea6d9b64ac91ec51ee94cc4fc744955df5be393e1c923c920db2b0"}, - {file = "rpds_py-0.13.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2b2415d5a7b7ee96aa3a54d4775c1fec140476a17ee12353806297e900eaeddc"}, - {file = "rpds_py-0.13.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:577d40a72550eac1386b77b43836151cb61ff6700adacda2ad4d883ca5a0b6f2"}, - {file = "rpds_py-0.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af2d1648eb625a460eee07d3e1ea3a4a6e84a1fb3a107f6a8e95ac19f7dcce67"}, - {file = "rpds_py-0.13.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5b769396eb358d6b55dbf78f3f7ca631ca1b2fe02136faad5af74f0111b4b6b7"}, - {file = "rpds_py-0.13.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:249c8e0055ca597707d71c5ad85fd2a1c8fdb99386a8c6c257e1b47b67a9bec1"}, - {file = "rpds_py-0.13.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:fe30ef31172bdcf946502a945faad110e8fff88c32c4bec9a593df0280e64d8a"}, - {file = "rpds_py-0.13.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:2647192facf63be9ed2d7a49ceb07efe01dc6cfb083bd2cc53c418437400cb99"}, - {file = "rpds_py-0.13.1-cp38-none-win32.whl", hash = "sha256:4011d5c854aa804c833331d38a2b6f6f2fe58a90c9f615afdb7aa7cf9d31f721"}, - {file = "rpds_py-0.13.1-cp38-none-win_amd64.whl", hash = "sha256:7cfae77da92a20f56cf89739a557b76e5c6edc094f6ad5c090b9e15fbbfcd1a4"}, - {file = "rpds_py-0.13.1-cp39-cp39-macosx_10_7_x86_64.whl", hash = "sha256:e9be1f7c5f9673616f875299339984da9447a40e3aea927750c843d6e5e2e029"}, - {file = "rpds_py-0.13.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:839676475ac2ccd1532d36af3d10d290a2ca149b702ed464131e450a767550df"}, - {file = "rpds_py-0.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a90031658805c63fe488f8e9e7a88b260ea121ba3ee9cdabcece9c9ddb50da39"}, - {file = "rpds_py-0.13.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8ba9fbc5d6e36bfeb5292530321cc56c4ef3f98048647fabd8f57543c34174ec"}, - {file = "rpds_py-0.13.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:08832078767545c5ee12561ce980714e1e4c6619b5b1e9a10248de60cddfa1fd"}, - {file = "rpds_py-0.13.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19f5aa7f5078d35ed8e344bcba40f35bc95f9176dddb33fc4f2084e04289fa63"}, - {file = "rpds_py-0.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80080972e1d000ad0341c7cc58b6855c80bd887675f92871221451d13a975072"}, - {file = "rpds_py-0.13.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:181ee352691c4434eb1c01802e9daa5edcc1007ff15023a320e2693fed6a661b"}, - {file = "rpds_py-0.13.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:d20da6b4c7aa9ee75ad0730beaba15d65157f5beeaca54a038bb968f92bf3ce3"}, - {file = "rpds_py-0.13.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:faa12a9f34671a30ea6bb027f04ec4e1fb8fa3fb3ed030893e729d4d0f3a9791"}, - {file = "rpds_py-0.13.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7cf241dbb50ea71c2e628ab2a32b5bfcd36e199152fc44e5c1edb0b773f1583e"}, - {file = "rpds_py-0.13.1-cp39-none-win32.whl", hash = "sha256:dab979662da1c9fbb464e310c0b06cb5f1d174d09a462553af78f0bfb3e01920"}, - {file = "rpds_py-0.13.1-cp39-none-win_amd64.whl", hash = "sha256:a2b3c79586636f1fa69a7bd59c87c15fca80c0d34b5c003d57f2f326e5276575"}, - {file = "rpds_py-0.13.1-pp310-pypy310_pp73-macosx_10_7_x86_64.whl", hash = "sha256:5967fa631d0ed9f8511dede08bc943a9727c949d05d1efac4ac82b2938024fb7"}, - {file = "rpds_py-0.13.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8308a8d49d1354278d5c068c888a58d7158a419b2e4d87c7839ed3641498790c"}, - {file = "rpds_py-0.13.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0580faeb9def6d0beb7aa666294d5604e569c4e24111ada423cf9936768d95c"}, - {file = "rpds_py-0.13.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2da81c1492291c1a90987d76a47c7b2d310661bf7c93a9de0511e27b796a8b46"}, - {file = "rpds_py-0.13.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1c9a1dc5e898ce30e2f9c0aa57181cddd4532b22b7780549441d6429d22d3b58"}, - {file = "rpds_py-0.13.1-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4ae6f423cb7d1c6256b7482025ace2825728f53b7ac58bcd574de6ee9d242c2"}, - {file = "rpds_py-0.13.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc3179e0815827cf963e634095ae5715ee73a5af61defbc8d6ca79f1bdae1d1d"}, - {file = "rpds_py-0.13.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0d9f8930092558fd15c9e07198625efb698f7cc00b3dc311c83eeec2540226a8"}, - {file = "rpds_py-0.13.1-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:d1d388d2f5f5a6065cf83c54dd12112b7389095669ff395e632003ae8999c6b8"}, - {file = "rpds_py-0.13.1-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:08b335fb0c45f0a9e2478a9ece6a1bfb00b6f4c4780f9be3cf36479c5d8dd374"}, - {file = "rpds_py-0.13.1-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:d11afdc5992bbd7af60ed5eb519873690d921425299f51d80aa3099ed49f2bcc"}, - {file = "rpds_py-0.13.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl", hash = "sha256:8c1f6c8df23be165eb0cb78f305483d00c6827a191e3a38394c658d5b9c80bbd"}, - {file = "rpds_py-0.13.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:528e2afaa56d815d2601b857644aeb395afe7e59212ab0659906dc29ae68d9a6"}, - {file = "rpds_py-0.13.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df2af1180b8eeececf4f819d22cc0668bfadadfd038b19a90bd2fb2ee419ec6f"}, - {file = "rpds_py-0.13.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:88956c993a20201744282362e3fd30962a9d86dc4f1dcf2bdb31fab27821b61f"}, - {file = "rpds_py-0.13.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee70ee5f4144a45a9e6169000b5b525d82673d5dab9f7587eccc92794814e7ac"}, - {file = "rpds_py-0.13.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c5fd099acaee2325f01281a130a39da08d885e4dedf01b84bf156ec2737d78fe"}, - {file = "rpds_py-0.13.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9656a09653b18b80764647d585750df2dff8928e03a706763ab40ec8c4872acc"}, - {file = "rpds_py-0.13.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7ba239bb37663b2b4cd08e703e79e13321512dccd8e5f0e9451d9e53a6b8509a"}, - {file = "rpds_py-0.13.1-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:3f55ae773abd96b1de25fc5c3fb356f491bd19116f8f854ba705beffc1ddc3c5"}, - {file = "rpds_py-0.13.1-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:f4b15a163448ec79241fb2f1bc5a8ae1a4a304f7a48d948d208a2935b26bf8a5"}, - {file = "rpds_py-0.13.1-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:1a3b2583c86bbfbf417304eeb13400ce7f8725376dc7d3efbf35dc5d7052ad48"}, - {file = "rpds_py-0.13.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl", hash = "sha256:f1059ca9a51c936c9a8d46fbc2c9a6b4c15ab3f13a97f1ad32f024b39666ba85"}, - {file = "rpds_py-0.13.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f55601fb58f92e4f4f1d05d80c24cb77505dc42103ddfd63ddfdc51d3da46fa2"}, - {file = "rpds_py-0.13.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fcfd5f91b882eedf8d9601bd21261d6ce0e61a8c66a7152d1f5df08d3f643ab1"}, - {file = "rpds_py-0.13.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6574f619e8734140d96c59bfa8a6a6e7a3336820ccd1bfd95ffa610673b650a2"}, - {file = "rpds_py-0.13.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a4b9d3f5c48bbe8d9e3758e498b3c34863f2c9b1ac57a4e6310183740e59c980"}, - {file = "rpds_py-0.13.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cdd6f8738e1f1d9df5b1603bb03cb30e442710e5672262b95d0f9fcb4edb0dab"}, - {file = "rpds_py-0.13.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8c2bf286e5d755a075e5e97ba56b3de08cccdad6b323ab0b21cc98875176b03"}, - {file = "rpds_py-0.13.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b3d4b390ee70ca9263b331ccfaf9819ee20e90dfd0201a295e23eb64a005dbef"}, - {file = "rpds_py-0.13.1-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:db8d0f0ad92f74feb61c4e4a71f1d573ef37c22ef4dc19cab93e501bfdad8cbd"}, - {file = "rpds_py-0.13.1-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:2abd669a39be69cdfe145927c7eb53a875b157740bf1e2d49e9619fc6f43362e"}, - {file = "rpds_py-0.13.1-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:2c173f529666bab8e3f948b74c6d91afa22ea147e6ebae49a48229d9020a47c4"}, - {file = "rpds_py-0.13.1.tar.gz", hash = "sha256:264f3a5906c62b9df3a00ad35f6da1987d321a053895bd85f9d5c708de5c0fbf"}, + {file = "rpds_py-0.20.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3ad0fda1635f8439cde85c700f964b23ed5fc2d28016b32b9ee5fe30da5c84e2"}, + {file = "rpds_py-0.20.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9bb4a0d90fdb03437c109a17eade42dfbf6190408f29b2744114d11586611d6f"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6377e647bbfd0a0b159fe557f2c6c602c159fc752fa316572f012fc0bf67150"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eb851b7df9dda52dc1415ebee12362047ce771fc36914586b2e9fcbd7d293b3e"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e0f80b739e5a8f54837be5d5c924483996b603d5502bfff79bf33da06164ee2"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a8c94dad2e45324fc74dce25e1645d4d14df9a4e54a30fa0ae8bad9a63928e3"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8e604fe73ba048c06085beaf51147eaec7df856824bfe7b98657cf436623daf"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:df3de6b7726b52966edf29663e57306b23ef775faf0ac01a3e9f4012a24a4140"}, + {file = "rpds_py-0.20.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:cf258ede5bc22a45c8e726b29835b9303c285ab46fc7c3a4cc770736b5304c9f"}, + {file = "rpds_py-0.20.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:55fea87029cded5df854ca7e192ec7bdb7ecd1d9a3f63d5c4eb09148acf4a7ce"}, + {file = "rpds_py-0.20.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ae94bd0b2f02c28e199e9bc51485d0c5601f58780636185660f86bf80c89af94"}, + {file = "rpds_py-0.20.0-cp310-none-win32.whl", hash = "sha256:28527c685f237c05445efec62426d285e47a58fb05ba0090a4340b73ecda6dee"}, + {file = "rpds_py-0.20.0-cp310-none-win_amd64.whl", hash = "sha256:238a2d5b1cad28cdc6ed15faf93a998336eb041c4e440dd7f902528b8891b399"}, + {file = "rpds_py-0.20.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:ac2f4f7a98934c2ed6505aead07b979e6f999389f16b714448fb39bbaa86a489"}, + {file = "rpds_py-0.20.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:220002c1b846db9afd83371d08d239fdc865e8f8c5795bbaec20916a76db3318"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d7919548df3f25374a1f5d01fbcd38dacab338ef5f33e044744b5c36729c8db"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:758406267907b3781beee0f0edfe4a179fbd97c0be2e9b1154d7f0a1279cf8e5"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3d61339e9f84a3f0767b1995adfb171a0d00a1185192718a17af6e124728e0f5"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1259c7b3705ac0a0bd38197565a5d603218591d3f6cee6e614e380b6ba61c6f6"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c1dc0f53856b9cc9a0ccca0a7cc61d3d20a7088201c0937f3f4048c1718a209"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7e60cb630f674a31f0368ed32b2a6b4331b8350d67de53c0359992444b116dd3"}, + {file = "rpds_py-0.20.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:dbe982f38565bb50cb7fb061ebf762c2f254ca3d8c20d4006878766e84266272"}, + {file = "rpds_py-0.20.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:514b3293b64187172bc77c8fb0cdae26981618021053b30d8371c3a902d4d5ad"}, + {file = "rpds_py-0.20.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d0a26ffe9d4dd35e4dfdd1e71f46401cff0181c75ac174711ccff0459135fa58"}, + {file = "rpds_py-0.20.0-cp311-none-win32.whl", hash = "sha256:89c19a494bf3ad08c1da49445cc5d13d8fefc265f48ee7e7556839acdacf69d0"}, + {file = "rpds_py-0.20.0-cp311-none-win_amd64.whl", hash = "sha256:c638144ce971df84650d3ed0096e2ae7af8e62ecbbb7b201c8935c370df00a2c"}, + {file = "rpds_py-0.20.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:a84ab91cbe7aab97f7446652d0ed37d35b68a465aeef8fc41932a9d7eee2c1a6"}, + {file = "rpds_py-0.20.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:56e27147a5a4c2c21633ff8475d185734c0e4befd1c989b5b95a5d0db699b21b"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2580b0c34583b85efec8c5c5ec9edf2dfe817330cc882ee972ae650e7b5ef739"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b80d4a7900cf6b66bb9cee5c352b2d708e29e5a37fe9bf784fa97fc11504bf6c"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:50eccbf054e62a7b2209b28dc7a22d6254860209d6753e6b78cfaeb0075d7bee"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:49a8063ea4296b3a7e81a5dfb8f7b2d73f0b1c20c2af401fb0cdf22e14711a96"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea438162a9fcbee3ecf36c23e6c68237479f89f962f82dae83dc15feeceb37e4"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:18d7585c463087bddcfa74c2ba267339f14f2515158ac4db30b1f9cbdb62c8ef"}, + {file = "rpds_py-0.20.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d4c7d1a051eeb39f5c9547e82ea27cbcc28338482242e3e0b7768033cb083821"}, + {file = "rpds_py-0.20.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:e4df1e3b3bec320790f699890d41c59d250f6beda159ea3c44c3f5bac1976940"}, + {file = "rpds_py-0.20.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2cf126d33a91ee6eedc7f3197b53e87a2acdac63602c0f03a02dd69e4b138174"}, + {file = "rpds_py-0.20.0-cp312-none-win32.whl", hash = "sha256:8bc7690f7caee50b04a79bf017a8d020c1f48c2a1077ffe172abec59870f1139"}, + {file = "rpds_py-0.20.0-cp312-none-win_amd64.whl", hash = "sha256:0e13e6952ef264c40587d510ad676a988df19adea20444c2b295e536457bc585"}, + {file = "rpds_py-0.20.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:aa9a0521aeca7d4941499a73ad7d4f8ffa3d1affc50b9ea11d992cd7eff18a29"}, + {file = "rpds_py-0.20.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:4a1f1d51eccb7e6c32ae89243cb352389228ea62f89cd80823ea7dd1b98e0b91"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a86a9b96070674fc88b6f9f71a97d2c1d3e5165574615d1f9168ecba4cecb24"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6c8ef2ebf76df43f5750b46851ed1cdf8f109d7787ca40035fe19fbdc1acc5a7"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b74b25f024b421d5859d156750ea9a65651793d51b76a2e9238c05c9d5f203a9"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:57eb94a8c16ab08fef6404301c38318e2c5a32216bf5de453e2714c964c125c8"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1940dae14e715e2e02dfd5b0f64a52e8374a517a1e531ad9412319dc3ac7879"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d20277fd62e1b992a50c43f13fbe13277a31f8c9f70d59759c88f644d66c619f"}, + {file = "rpds_py-0.20.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:06db23d43f26478303e954c34c75182356ca9aa7797d22c5345b16871ab9c45c"}, + {file = "rpds_py-0.20.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:b2a5db5397d82fa847e4c624b0c98fe59d2d9b7cf0ce6de09e4d2e80f8f5b3f2"}, + {file = "rpds_py-0.20.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:5a35df9f5548fd79cb2f52d27182108c3e6641a4feb0f39067911bf2adaa3e57"}, + {file = "rpds_py-0.20.0-cp313-none-win32.whl", hash = "sha256:fd2d84f40633bc475ef2d5490b9c19543fbf18596dcb1b291e3a12ea5d722f7a"}, + {file = "rpds_py-0.20.0-cp313-none-win_amd64.whl", hash = "sha256:9bc2d153989e3216b0559251b0c260cfd168ec78b1fac33dd485750a228db5a2"}, + {file = "rpds_py-0.20.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:f2fbf7db2012d4876fb0d66b5b9ba6591197b0f165db8d99371d976546472a24"}, + {file = "rpds_py-0.20.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:1e5f3cd7397c8f86c8cc72d5a791071431c108edd79872cdd96e00abd8497d29"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce9845054c13696f7af7f2b353e6b4f676dab1b4b215d7fe5e05c6f8bb06f965"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c3e130fd0ec56cb76eb49ef52faead8ff09d13f4527e9b0c400307ff72b408e1"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4b16aa0107ecb512b568244ef461f27697164d9a68d8b35090e9b0c1c8b27752"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aa7f429242aae2947246587d2964fad750b79e8c233a2367f71b554e9447949c"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af0fc424a5842a11e28956e69395fbbeab2c97c42253169d87e90aac2886d751"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b8c00a3b1e70c1d3891f0db1b05292747f0dbcfb49c43f9244d04c70fbc40eb8"}, + {file = "rpds_py-0.20.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:40ce74fc86ee4645d0a225498d091d8bc61f39b709ebef8204cb8b5a464d3c0e"}, + {file = "rpds_py-0.20.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4fe84294c7019456e56d93e8ababdad5a329cd25975be749c3f5f558abb48253"}, + {file = "rpds_py-0.20.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:338ca4539aad4ce70a656e5187a3a31c5204f261aef9f6ab50e50bcdffaf050a"}, + {file = "rpds_py-0.20.0-cp38-none-win32.whl", hash = "sha256:54b43a2b07db18314669092bb2de584524d1ef414588780261e31e85846c26a5"}, + {file = "rpds_py-0.20.0-cp38-none-win_amd64.whl", hash = "sha256:a1862d2d7ce1674cffa6d186d53ca95c6e17ed2b06b3f4c476173565c862d232"}, + {file = "rpds_py-0.20.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:3fde368e9140312b6e8b6c09fb9f8c8c2f00999d1823403ae90cc00480221b22"}, + {file = "rpds_py-0.20.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9824fb430c9cf9af743cf7aaf6707bf14323fb51ee74425c380f4c846ea70789"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:11ef6ce74616342888b69878d45e9f779b95d4bd48b382a229fe624a409b72c5"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c52d3f2f82b763a24ef52f5d24358553e8403ce05f893b5347098014f2d9eff2"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9d35cef91e59ebbeaa45214861874bc6f19eb35de96db73e467a8358d701a96c"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d72278a30111e5b5525c1dd96120d9e958464316f55adb030433ea905866f4de"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4c29cbbba378759ac5786730d1c3cb4ec6f8ababf5c42a9ce303dc4b3d08cda"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6632f2d04f15d1bd6fe0eedd3b86d9061b836ddca4c03d5cf5c7e9e6b7c14580"}, + {file = "rpds_py-0.20.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:d0b67d87bb45ed1cd020e8fbf2307d449b68abc45402fe1a4ac9e46c3c8b192b"}, + {file = "rpds_py-0.20.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ec31a99ca63bf3cd7f1a5ac9fe95c5e2d060d3c768a09bc1d16e235840861420"}, + {file = "rpds_py-0.20.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:22e6c9976e38f4d8c4a63bd8a8edac5307dffd3ee7e6026d97f3cc3a2dc02a0b"}, + {file = "rpds_py-0.20.0-cp39-none-win32.whl", hash = "sha256:569b3ea770c2717b730b61998b6c54996adee3cef69fc28d444f3e7920313cf7"}, + {file = "rpds_py-0.20.0-cp39-none-win_amd64.whl", hash = "sha256:e6900ecdd50ce0facf703f7a00df12374b74bbc8ad9fe0f6559947fb20f82364"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:617c7357272c67696fd052811e352ac54ed1d9b49ab370261a80d3b6ce385045"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9426133526f69fcaba6e42146b4e12d6bc6c839b8b555097020e2b78ce908dcc"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:deb62214c42a261cb3eb04d474f7155279c1a8a8c30ac89b7dcb1721d92c3c02"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fcaeb7b57f1a1e071ebd748984359fef83ecb026325b9d4ca847c95bc7311c92"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d454b8749b4bd70dd0a79f428731ee263fa6995f83ccb8bada706e8d1d3ff89d"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d807dc2051abe041b6649681dce568f8e10668e3c1c6543ebae58f2d7e617855"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3c20f0ddeb6e29126d45f89206b8291352b8c5b44384e78a6499d68b52ae511"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b7f19250ceef892adf27f0399b9e5afad019288e9be756d6919cb58892129f51"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:4f1ed4749a08379555cebf4650453f14452eaa9c43d0a95c49db50c18b7da075"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:dcedf0b42bcb4cfff4101d7771a10532415a6106062f005ab97d1d0ab5681c60"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:39ed0d010457a78f54090fafb5d108501b5aa5604cc22408fc1c0c77eac14344"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:bb273176be34a746bdac0b0d7e4e2c467323d13640b736c4c477881a3220a989"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f918a1a130a6dfe1d7fe0f105064141342e7dd1611f2e6a21cd2f5c8cb1cfb3e"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f60012a73aa396be721558caa3a6fd49b3dd0033d1675c6d59c4502e870fcf0c"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d2b1ad682a3dfda2a4e8ad8572f3100f95fad98cb99faf37ff0ddfe9cbf9d03"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:614fdafe9f5f19c63ea02817fa4861c606a59a604a77c8cdef5aa01d28b97921"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fa518bcd7600c584bf42e6617ee8132869e877db2f76bcdc281ec6a4113a53ab"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0475242f447cc6cb8a9dd486d68b2ef7fbee84427124c232bff5f63b1fe11e5"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f90a4cd061914a60bd51c68bcb4357086991bd0bb93d8aa66a6da7701370708f"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:def7400461c3a3f26e49078302e1c1b38f6752342c77e3cf72ce91ca69fb1bc1"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:65794e4048ee837494aea3c21a28ad5fc080994dfba5b036cf84de37f7ad5074"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:faefcc78f53a88f3076b7f8be0a8f8d35133a3ecf7f3770895c25f8813460f08"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:5b4f105deeffa28bbcdff6c49b34e74903139afa690e35d2d9e3c2c2fba18cec"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:fdfc3a892927458d98f3d55428ae46b921d1f7543b89382fdb483f5640daaec8"}, + {file = "rpds_py-0.20.0.tar.gz", hash = "sha256:d72a210824facfdaf8768cf2d7ca25a042c30320b3020de2fa04640920d4e121"}, ] [[package]] @@ -2173,13 +2233,13 @@ pyasn1 = ">=0.1.3" [[package]] name = "ruamel-yaml" -version = "0.18.5" +version = "0.18.6" description = "ruamel.yaml is a YAML parser/emitter that supports roundtrip preservation of comments, seq/map flow style, and map key order" optional = false python-versions = ">=3.7" files = [ - {file = "ruamel.yaml-0.18.5-py3-none-any.whl", hash = "sha256:a013ac02f99a69cdd6277d9664689eb1acba07069f912823177c5eced21a6ada"}, - {file = "ruamel.yaml-0.18.5.tar.gz", hash = "sha256:61917e3a35a569c1133a8f772e1226961bf5a1198bea7e23f06a0841dea1ab0e"}, + {file = "ruamel.yaml-0.18.6-py3-none-any.whl", hash = "sha256:57b53ba33def16c4f3d807c0ccbc00f8a6081827e81ba2491691b76882d0c636"}, + {file = "ruamel.yaml-0.18.6.tar.gz", hash = "sha256:8b27e6a217e786c6fbe5634d8f3f11bc63e0f80f6a5890f28863d9c45aac311b"}, ] [package.dependencies] @@ -2268,18 +2328,23 @@ ontodev-cogs = ">=0.3.3,<0.4.0" [[package]] name = "setuptools" -version = "70.0.0" +version = "75.1.0" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-70.0.0-py3-none-any.whl", hash = "sha256:54faa7f2e8d2d11bcd2c07bed282eef1046b5c080d1c32add737d7b5817b1ad4"}, - {file = "setuptools-70.0.0.tar.gz", hash = "sha256:f211a66637b8fa059bb28183da127d4e86396c991a942b028c6650d4319c3fd0"}, + {file = "setuptools-75.1.0-py3-none-any.whl", hash = "sha256:35ab7fd3bcd95e6b7fd704e4a1539513edad446c097797f2985e0e4b960772f2"}, + {file = "setuptools-75.1.0.tar.gz", hash = "sha256:d59a21b17a275fb872a9c3dae73963160ae079f1049ed956880cd7c09b120538"}, ] [package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] -testing = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "mypy (==1.9)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (>=0.2.1)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.collections", "jaraco.functools", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] [[package]] name = "shexjsg" @@ -2319,13 +2384,13 @@ files = [ [[package]] name = "soupsieve" -version = "2.5" +version = "2.6" description = "A modern CSS selector implementation for Beautiful Soup." optional = false python-versions = ">=3.8" files = [ - {file = "soupsieve-2.5-py3-none-any.whl", hash = "sha256:eaa337ff55a1579b6549dc679565eac1e3d000563bcb1c8ab0d0fefbc0c2cdc7"}, - {file = "soupsieve-2.5.tar.gz", hash = "sha256:5663d5a7b3bfaeee0bc4372e7fc48f9cff4940b3eec54a6451cc5299f1097690"}, + {file = "soupsieve-2.6-py3-none-any.whl", hash = "sha256:e72c4ff06e4fb6e4b5a9f0f55fe6e81514581fca1515028625d0f299c602ccc9"}, + {file = "soupsieve-2.6.tar.gz", hash = "sha256:e2e68417777af359ec65daac1057404a3c8a5455bb8abc36f1a9866ab1a51abb"}, ] [[package]] @@ -2346,88 +2411,90 @@ sparqlwrapper = ">=1.8.2" [[package]] name = "sparqlwrapper" -version = "1.8.5" +version = "2.0.0" description = "SPARQL Endpoint interface to Python" optional = false -python-versions = "*" +python-versions = ">=3.7" files = [ - {file = "SPARQLWrapper-1.8.5-py2-none-any.whl", hash = "sha256:357ee8a27bc910ea13d77836dbddd0b914991495b8cc1bf70676578155e962a8"}, - {file = "SPARQLWrapper-1.8.5-py3-none-any.whl", hash = "sha256:c7f9c9d8ebb13428771bc3b6dee54197422507dcc3dea34e30d5dcfc53478dec"}, - {file = "SPARQLWrapper-1.8.5.tar.gz", hash = "sha256:d6a66b5b8cda141660e07aeb00472db077a98d22cb588c973209c7336850fb3c"}, + {file = "SPARQLWrapper-2.0.0-py3-none-any.whl", hash = "sha256:c99a7204fff676ee28e6acef327dc1ff8451c6f7217dcd8d49e8872f324a8a20"}, + {file = "SPARQLWrapper-2.0.0.tar.gz", hash = "sha256:3fed3ebcc77617a4a74d2644b86fd88e0f32e7f7003ac7b2b334c026201731f1"}, ] [package.dependencies] -rdflib = ">=4.0" +rdflib = ">=6.1.1" [package.extras] +dev = ["mypy (>=0.931)", "pandas (>=1.3.5)", "pandas-stubs (>=1.2.0.48)", "setuptools (>=3.7.1)"] +docs = ["sphinx (<5)", "sphinx-rtd-theme"] keepalive = ["keepalive (>=0.5)"] +pandas = ["pandas (>=1.3.5)"] [[package]] name = "sqlalchemy" -version = "2.0.23" +version = "2.0.35" description = "Database Abstraction Library" optional = false python-versions = ">=3.7" files = [ - {file = "SQLAlchemy-2.0.23-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:638c2c0b6b4661a4fd264f6fb804eccd392745c5887f9317feb64bb7cb03b3ea"}, - {file = "SQLAlchemy-2.0.23-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e3b5036aa326dc2df50cba3c958e29b291a80f604b1afa4c8ce73e78e1c9f01d"}, - {file = "SQLAlchemy-2.0.23-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:787af80107fb691934a01889ca8f82a44adedbf5ef3d6ad7d0f0b9ac557e0c34"}, - {file = "SQLAlchemy-2.0.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c14eba45983d2f48f7546bb32b47937ee2cafae353646295f0e99f35b14286ab"}, - {file = "SQLAlchemy-2.0.23-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0666031df46b9badba9bed00092a1ffa3aa063a5e68fa244acd9f08070e936d3"}, - {file = "SQLAlchemy-2.0.23-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:89a01238fcb9a8af118eaad3ffcc5dedaacbd429dc6fdc43fe430d3a941ff965"}, - {file = "SQLAlchemy-2.0.23-cp310-cp310-win32.whl", hash = "sha256:cabafc7837b6cec61c0e1e5c6d14ef250b675fa9c3060ed8a7e38653bd732ff8"}, - {file = "SQLAlchemy-2.0.23-cp310-cp310-win_amd64.whl", hash = "sha256:87a3d6b53c39cd173990de2f5f4b83431d534a74f0e2f88bd16eabb5667e65c6"}, - {file = "SQLAlchemy-2.0.23-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d5578e6863eeb998980c212a39106ea139bdc0b3f73291b96e27c929c90cd8e1"}, - {file = "SQLAlchemy-2.0.23-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:62d9e964870ea5ade4bc870ac4004c456efe75fb50404c03c5fd61f8bc669a72"}, - {file = "SQLAlchemy-2.0.23-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c80c38bd2ea35b97cbf7c21aeb129dcbebbf344ee01a7141016ab7b851464f8e"}, - {file = "SQLAlchemy-2.0.23-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75eefe09e98043cff2fb8af9796e20747ae870c903dc61d41b0c2e55128f958d"}, - {file = "SQLAlchemy-2.0.23-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:bd45a5b6c68357578263d74daab6ff9439517f87da63442d244f9f23df56138d"}, - {file = "SQLAlchemy-2.0.23-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a86cb7063e2c9fb8e774f77fbf8475516d270a3e989da55fa05d08089d77f8c4"}, - {file = "SQLAlchemy-2.0.23-cp311-cp311-win32.whl", hash = "sha256:b41f5d65b54cdf4934ecede2f41b9c60c9f785620416e8e6c48349ab18643855"}, - {file = "SQLAlchemy-2.0.23-cp311-cp311-win_amd64.whl", hash = "sha256:9ca922f305d67605668e93991aaf2c12239c78207bca3b891cd51a4515c72e22"}, - {file = "SQLAlchemy-2.0.23-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d0f7fb0c7527c41fa6fcae2be537ac137f636a41b4c5a4c58914541e2f436b45"}, - {file = "SQLAlchemy-2.0.23-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7c424983ab447dab126c39d3ce3be5bee95700783204a72549c3dceffe0fc8f4"}, - {file = "SQLAlchemy-2.0.23-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f508ba8f89e0a5ecdfd3761f82dda2a3d7b678a626967608f4273e0dba8f07ac"}, - {file = "SQLAlchemy-2.0.23-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6463aa765cf02b9247e38b35853923edbf2f6fd1963df88706bc1d02410a5577"}, - {file = "SQLAlchemy-2.0.23-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e599a51acf3cc4d31d1a0cf248d8f8d863b6386d2b6782c5074427ebb7803bda"}, - {file = "SQLAlchemy-2.0.23-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:fd54601ef9cc455a0c61e5245f690c8a3ad67ddb03d3b91c361d076def0b4c60"}, - {file = "SQLAlchemy-2.0.23-cp312-cp312-win32.whl", hash = "sha256:42d0b0290a8fb0165ea2c2781ae66e95cca6e27a2fbe1016ff8db3112ac1e846"}, - {file = "SQLAlchemy-2.0.23-cp312-cp312-win_amd64.whl", hash = "sha256:227135ef1e48165f37590b8bfc44ed7ff4c074bf04dc8d6f8e7f1c14a94aa6ca"}, - {file = "SQLAlchemy-2.0.23-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:14aebfe28b99f24f8a4c1346c48bc3d63705b1f919a24c27471136d2f219f02d"}, - {file = "SQLAlchemy-2.0.23-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e983fa42164577d073778d06d2cc5d020322425a509a08119bdcee70ad856bf"}, - {file = "SQLAlchemy-2.0.23-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e0dc9031baa46ad0dd5a269cb7a92a73284d1309228be1d5935dac8fb3cae24"}, - {file = "SQLAlchemy-2.0.23-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:5f94aeb99f43729960638e7468d4688f6efccb837a858b34574e01143cf11f89"}, - {file = "SQLAlchemy-2.0.23-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:63bfc3acc970776036f6d1d0e65faa7473be9f3135d37a463c5eba5efcdb24c8"}, - {file = "SQLAlchemy-2.0.23-cp37-cp37m-win32.whl", hash = "sha256:f48ed89dd11c3c586f45e9eec1e437b355b3b6f6884ea4a4c3111a3358fd0c18"}, - {file = "SQLAlchemy-2.0.23-cp37-cp37m-win_amd64.whl", hash = "sha256:1e018aba8363adb0599e745af245306cb8c46b9ad0a6fc0a86745b6ff7d940fc"}, - {file = "SQLAlchemy-2.0.23-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:64ac935a90bc479fee77f9463f298943b0e60005fe5de2aa654d9cdef46c54df"}, - {file = "SQLAlchemy-2.0.23-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c4722f3bc3c1c2fcc3702dbe0016ba31148dd6efcd2a2fd33c1b4897c6a19693"}, - {file = "SQLAlchemy-2.0.23-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4af79c06825e2836de21439cb2a6ce22b2ca129bad74f359bddd173f39582bf5"}, - {file = "SQLAlchemy-2.0.23-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:683ef58ca8eea4747737a1c35c11372ffeb84578d3aab8f3e10b1d13d66f2bc4"}, - {file = "SQLAlchemy-2.0.23-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:d4041ad05b35f1f4da481f6b811b4af2f29e83af253bf37c3c4582b2c68934ab"}, - {file = "SQLAlchemy-2.0.23-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aeb397de65a0a62f14c257f36a726945a7f7bb60253462e8602d9b97b5cbe204"}, - {file = "SQLAlchemy-2.0.23-cp38-cp38-win32.whl", hash = "sha256:42ede90148b73fe4ab4a089f3126b2cfae8cfefc955c8174d697bb46210c8306"}, - {file = "SQLAlchemy-2.0.23-cp38-cp38-win_amd64.whl", hash = "sha256:964971b52daab357d2c0875825e36584d58f536e920f2968df8d581054eada4b"}, - {file = "SQLAlchemy-2.0.23-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:616fe7bcff0a05098f64b4478b78ec2dfa03225c23734d83d6c169eb41a93e55"}, - {file = "SQLAlchemy-2.0.23-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0e680527245895aba86afbd5bef6c316831c02aa988d1aad83c47ffe92655e74"}, - {file = "SQLAlchemy-2.0.23-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9585b646ffb048c0250acc7dad92536591ffe35dba624bb8fd9b471e25212a35"}, - {file = "SQLAlchemy-2.0.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4895a63e2c271ffc7a81ea424b94060f7b3b03b4ea0cd58ab5bb676ed02f4221"}, - {file = "SQLAlchemy-2.0.23-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:cc1d21576f958c42d9aec68eba5c1a7d715e5fc07825a629015fe8e3b0657fb0"}, - {file = "SQLAlchemy-2.0.23-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:967c0b71156f793e6662dd839da54f884631755275ed71f1539c95bbada9aaab"}, - {file = "SQLAlchemy-2.0.23-cp39-cp39-win32.whl", hash = "sha256:0a8c6aa506893e25a04233bc721c6b6cf844bafd7250535abb56cb6cc1368884"}, - {file = "SQLAlchemy-2.0.23-cp39-cp39-win_amd64.whl", hash = "sha256:f3420d00d2cb42432c1d0e44540ae83185ccbbc67a6054dcc8ab5387add6620b"}, - {file = "SQLAlchemy-2.0.23-py3-none-any.whl", hash = "sha256:31952bbc527d633b9479f5f81e8b9dfada00b91d6baba021a869095f1a97006d"}, - {file = "SQLAlchemy-2.0.23.tar.gz", hash = "sha256:c1bda93cbbe4aa2aa0aa8655c5aeda505cd219ff3e8da91d1d329e143e4aff69"}, -] - -[package.dependencies] -greenlet = {version = "!=0.4.17", markers = "platform_machine == \"aarch64\" or platform_machine == \"ppc64le\" or platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"AMD64\" or platform_machine == \"win32\" or platform_machine == \"WIN32\""} -typing-extensions = ">=4.2.0" + {file = "SQLAlchemy-2.0.35-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:67219632be22f14750f0d1c70e62f204ba69d28f62fd6432ba05ab295853de9b"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4668bd8faf7e5b71c0319407b608f278f279668f358857dbfd10ef1954ac9f90"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb8bea573863762bbf45d1e13f87c2d2fd32cee2dbd50d050f83f87429c9e1ea"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f552023710d4b93d8fb29a91fadf97de89c5926c6bd758897875435f2a939f33"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:016b2e665f778f13d3c438651dd4de244214b527a275e0acf1d44c05bc6026a9"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7befc148de64b6060937231cbff8d01ccf0bfd75aa26383ffdf8d82b12ec04ff"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-win32.whl", hash = "sha256:22b83aed390e3099584b839b93f80a0f4a95ee7f48270c97c90acd40ee646f0b"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-win_amd64.whl", hash = "sha256:a29762cd3d116585278ffb2e5b8cc311fb095ea278b96feef28d0b423154858e"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e21f66748ab725ade40fa7af8ec8b5019c68ab00b929f6643e1b1af461eddb60"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8a6219108a15fc6d24de499d0d515c7235c617b2540d97116b663dade1a54d62"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:042622a5306c23b972192283f4e22372da3b8ddf5f7aac1cc5d9c9b222ab3ff6"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:627dee0c280eea91aed87b20a1f849e9ae2fe719d52cbf847c0e0ea34464b3f7"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:4fdcd72a789c1c31ed242fd8c1bcd9ea186a98ee8e5408a50e610edfef980d71"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:89b64cd8898a3a6f642db4eb7b26d1b28a497d4022eccd7717ca066823e9fb01"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-win32.whl", hash = "sha256:6a93c5a0dfe8d34951e8a6f499a9479ffb9258123551fa007fc708ae2ac2bc5e"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-win_amd64.whl", hash = "sha256:c68fe3fcde03920c46697585620135b4ecfdfc1ed23e75cc2c2ae9f8502c10b8"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:eb60b026d8ad0c97917cb81d3662d0b39b8ff1335e3fabb24984c6acd0c900a2"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6921ee01caf375363be5e9ae70d08ce7ca9d7e0e8983183080211a062d299468"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8cdf1a0dbe5ced887a9b127da4ffd7354e9c1a3b9bb330dce84df6b70ccb3a8d"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93a71c8601e823236ac0e5d087e4f397874a421017b3318fd92c0b14acf2b6db"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e04b622bb8a88f10e439084486f2f6349bf4d50605ac3e445869c7ea5cf0fa8c"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1b56961e2d31389aaadf4906d453859f35302b4eb818d34a26fab72596076bb8"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-win32.whl", hash = "sha256:0f9f3f9a3763b9c4deb8c5d09c4cc52ffe49f9876af41cc1b2ad0138878453cf"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-win_amd64.whl", hash = "sha256:25b0f63e7fcc2a6290cb5f7f5b4fc4047843504983a28856ce9b35d8f7de03cc"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:f021d334f2ca692523aaf7bbf7592ceff70c8594fad853416a81d66b35e3abf9"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:05c3f58cf91683102f2f0265c0db3bd3892e9eedabe059720492dbaa4f922da1"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:032d979ce77a6c2432653322ba4cbeabf5a6837f704d16fa38b5a05d8e21fa00"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:2e795c2f7d7249b75bb5f479b432a51b59041580d20599d4e112b5f2046437a3"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:cc32b2990fc34380ec2f6195f33a76b6cdaa9eecf09f0c9404b74fc120aef36f"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-win32.whl", hash = "sha256:9509c4123491d0e63fb5e16199e09f8e262066e58903e84615c301dde8fa2e87"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-win_amd64.whl", hash = "sha256:3655af10ebcc0f1e4e06c5900bb33e080d6a1fa4228f502121f28a3b1753cde5"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:4c31943b61ed8fdd63dfd12ccc919f2bf95eefca133767db6fbbd15da62078ec"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a62dd5d7cc8626a3634208df458c5fe4f21200d96a74d122c83bc2015b333bc1"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0630774b0977804fba4b6bbea6852ab56c14965a2b0c7fc7282c5f7d90a1ae72"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d625eddf7efeba2abfd9c014a22c0f6b3796e0ffb48f5d5ab106568ef01ff5a"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:ada603db10bb865bbe591939de854faf2c60f43c9b763e90f653224138f910d9"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c41411e192f8d3ea39ea70e0fae48762cd11a2244e03751a98bd3c0ca9a4e936"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-win32.whl", hash = "sha256:d299797d75cd747e7797b1b41817111406b8b10a4f88b6e8fe5b5e59598b43b0"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-win_amd64.whl", hash = "sha256:0375a141e1c0878103eb3d719eb6d5aa444b490c96f3fedab8471c7f6ffe70ee"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ccae5de2a0140d8be6838c331604f91d6fafd0735dbdcee1ac78fc8fbaba76b4"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2a275a806f73e849e1c309ac11108ea1a14cd7058577aba962cd7190e27c9e3c"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:732e026240cdd1c1b2e3ac515c7a23820430ed94292ce33806a95869c46bd139"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:890da8cd1941fa3dab28c5bac3b9da8502e7e366f895b3b8e500896f12f94d11"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:c0d8326269dbf944b9201911b0d9f3dc524d64779a07518199a58384c3d37a44"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:b76d63495b0508ab9fc23f8152bac63205d2a704cd009a2b0722f4c8e0cba8e0"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-win32.whl", hash = "sha256:69683e02e8a9de37f17985905a5eca18ad651bf592314b4d3d799029797d0eb3"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-win_amd64.whl", hash = "sha256:aee110e4ef3c528f3abbc3c2018c121e708938adeeff9006428dd7c8555e9b3f"}, + {file = "SQLAlchemy-2.0.35-py3-none-any.whl", hash = "sha256:2ab3f0336c0387662ce6221ad30ab3a5e6499aab01b9790879b6578fd9b8faa1"}, + {file = "sqlalchemy-2.0.35.tar.gz", hash = "sha256:e11d7ea4d24f0a262bccf9a7cd6284c976c5369dac21db237cff59586045ab9f"}, +] + +[package.dependencies] +greenlet = {version = "!=0.4.17", markers = "python_version < \"3.13\" and (platform_machine == \"aarch64\" or platform_machine == \"ppc64le\" or platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"AMD64\" or platform_machine == \"win32\" or platform_machine == \"WIN32\")"} +typing-extensions = ">=4.6.0" [package.extras] aiomysql = ["aiomysql (>=0.2.0)", "greenlet (!=0.4.17)"] aioodbc = ["aioodbc", "greenlet (!=0.4.17)"] -aiosqlite = ["aiosqlite", "greenlet (!=0.4.17)", "typing-extensions (!=3.10.0.1)"] +aiosqlite = ["aiosqlite", "greenlet (!=0.4.17)", "typing_extensions (!=3.10.0.1)"] asyncio = ["greenlet (!=0.4.17)"] asyncmy = ["asyncmy (>=0.2.3,!=0.2.4,!=0.2.6)", "greenlet (!=0.4.17)"] mariadb-connector = ["mariadb (>=1.0.1,!=1.1.2,!=1.1.5)"] @@ -2437,7 +2504,7 @@ mssql-pyodbc = ["pyodbc"] mypy = ["mypy (>=0.910)"] mysql = ["mysqlclient (>=1.4.0)"] mysql-connector = ["mysql-connector-python"] -oracle = ["cx-oracle (>=8)"] +oracle = ["cx_oracle (>=8)"] oracle-oracledb = ["oracledb (>=1.0.1)"] postgresql = ["psycopg2 (>=2.7)"] postgresql-asyncpg = ["asyncpg", "greenlet (!=0.4.17)"] @@ -2447,7 +2514,7 @@ postgresql-psycopg2binary = ["psycopg2-binary"] postgresql-psycopg2cffi = ["psycopg2cffi"] postgresql-psycopgbinary = ["psycopg[binary] (>=3.0.7)"] pymysql = ["pymysql"] -sqlcipher = ["sqlcipher3-binary"] +sqlcipher = ["sqlcipher3_binary"] [[package]] name = "stringcase" @@ -2475,13 +2542,13 @@ widechars = ["wcwidth"] [[package]] name = "termcolor" -version = "2.3.0" +version = "2.4.0" description = "ANSI color formatting for output in terminal" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "termcolor-2.3.0-py3-none-any.whl", hash = "sha256:3afb05607b89aed0ffe25202399ee0867ad4d3cb4180d98aaf8eefa6a5f7d475"}, - {file = "termcolor-2.3.0.tar.gz", hash = "sha256:b5b08f68937f138fe92f6c089b99f1e2da0ae56c52b78bf7075fd95420fd9a5a"}, + {file = "termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63"}, + {file = "termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a"}, ] [package.extras] @@ -2500,13 +2567,13 @@ files = [ [[package]] name = "tqdm" -version = "4.66.3" +version = "4.66.5" description = "Fast, Extensible Progress Meter" optional = false python-versions = ">=3.7" files = [ - {file = "tqdm-4.66.3-py3-none-any.whl", hash = "sha256:4f41d54107ff9a223dca80b53efe4fb654c67efaba7f47bada3ee9d50e05bd53"}, - {file = "tqdm-4.66.3.tar.gz", hash = "sha256:23097a41eba115ba99ecae40d06444c15d1c0c698d527a01c6c8bd1c5d0647e5"}, + {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, + {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, ] [package.dependencies] @@ -2520,24 +2587,24 @@ telegram = ["requests"] [[package]] name = "types-python-dateutil" -version = "2.8.19.14" +version = "2.9.0.20240906" description = "Typing stubs for python-dateutil" optional = false -python-versions = "*" +python-versions = ">=3.8" files = [ - {file = "types-python-dateutil-2.8.19.14.tar.gz", hash = "sha256:1f4f10ac98bb8b16ade9dbee3518d9ace017821d94b057a425b069f834737f4b"}, - {file = "types_python_dateutil-2.8.19.14-py3-none-any.whl", hash = "sha256:f977b8de27787639986b4e28963263fd0e5158942b3ecef91b9335c130cb1ce9"}, + {file = "types-python-dateutil-2.9.0.20240906.tar.gz", hash = "sha256:9706c3b68284c25adffc47319ecc7947e5bb86b3773f843c73906fd598bc176e"}, + {file = "types_python_dateutil-2.9.0.20240906-py3-none-any.whl", hash = "sha256:27c8cc2d058ccb14946eebcaaa503088f4f6dbc4fb6093d3d456a49aef2753f6"}, ] [[package]] name = "typing-extensions" -version = "4.8.0" +version = "4.12.2" description = "Backported and Experimental Type Hints for Python 3.8+" optional = false python-versions = ">=3.8" files = [ - {file = "typing_extensions-4.8.0-py3-none-any.whl", hash = "sha256:8f92fc8806f9a6b641eaa5318da32b44d401efaac0f6678c9bc448ba3605faa0"}, - {file = "typing_extensions-4.8.0.tar.gz", hash = "sha256:df8e4339e9cb77357558cbdbceca33c303714cf861d1eef15e1070055ae8b7ef"}, + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, ] [[package]] @@ -2567,13 +2634,13 @@ files = [ [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -2584,38 +2651,41 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "watchdog" -version = "3.0.0" +version = "5.0.2" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.7" -files = [ - {file = "watchdog-3.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:336adfc6f5cc4e037d52db31194f7581ff744b67382eb6021c868322e32eef41"}, - {file = "watchdog-3.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a70a8dcde91be523c35b2bf96196edc5730edb347e374c7de7cd20c43ed95397"}, - {file = "watchdog-3.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:adfdeab2da79ea2f76f87eb42a3ab1966a5313e5a69a0213a3cc06ef692b0e96"}, - {file = "watchdog-3.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2b57a1e730af3156d13b7fdddfc23dea6487fceca29fc75c5a868beed29177ae"}, - {file = "watchdog-3.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7ade88d0d778b1b222adebcc0927428f883db07017618a5e684fd03b83342bd9"}, - {file = "watchdog-3.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7e447d172af52ad204d19982739aa2346245cc5ba6f579d16dac4bfec226d2e7"}, - {file = "watchdog-3.0.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:9fac43a7466eb73e64a9940ac9ed6369baa39b3bf221ae23493a9ec4d0022674"}, - {file = "watchdog-3.0.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8ae9cda41fa114e28faf86cb137d751a17ffd0316d1c34ccf2235e8a84365c7f"}, - {file = "watchdog-3.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:25f70b4aa53bd743729c7475d7ec41093a580528b100e9a8c5b5efe8899592fc"}, - {file = "watchdog-3.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4f94069eb16657d2c6faada4624c39464f65c05606af50bb7902e036e3219be3"}, - {file = "watchdog-3.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7c5f84b5194c24dd573fa6472685b2a27cc5a17fe5f7b6fd40345378ca6812e3"}, - {file = "watchdog-3.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3aa7f6a12e831ddfe78cdd4f8996af9cf334fd6346531b16cec61c3b3c0d8da0"}, - {file = "watchdog-3.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:233b5817932685d39a7896b1090353fc8efc1ef99c9c054e46c8002561252fb8"}, - {file = "watchdog-3.0.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:13bbbb462ee42ec3c5723e1205be8ced776f05b100e4737518c67c8325cf6100"}, - {file = "watchdog-3.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:8f3ceecd20d71067c7fd4c9e832d4e22584318983cabc013dbf3f70ea95de346"}, - {file = "watchdog-3.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c9d8c8ec7efb887333cf71e328e39cffbf771d8f8f95d308ea4125bf5f90ba64"}, - {file = "watchdog-3.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0e06ab8858a76e1219e68c7573dfeba9dd1c0219476c5a44d5333b01d7e1743a"}, - {file = "watchdog-3.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:d00e6be486affb5781468457b21a6cbe848c33ef43f9ea4a73b4882e5f188a44"}, - {file = "watchdog-3.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:c07253088265c363d1ddf4b3cdb808d59a0468ecd017770ed716991620b8f77a"}, - {file = "watchdog-3.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:5113334cf8cf0ac8cd45e1f8309a603291b614191c9add34d33075727a967709"}, - {file = "watchdog-3.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:51f90f73b4697bac9c9a78394c3acbbd331ccd3655c11be1a15ae6fe289a8c83"}, - {file = "watchdog-3.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:ba07e92756c97e3aca0912b5cbc4e5ad802f4557212788e72a72a47ff376950d"}, - {file = "watchdog-3.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:d429c2430c93b7903914e4db9a966c7f2b068dd2ebdd2fa9b9ce094c7d459f33"}, - {file = "watchdog-3.0.0-py3-none-win32.whl", hash = "sha256:3ed7c71a9dccfe838c2f0b6314ed0d9b22e77d268c67e015450a29036a81f60f"}, - {file = "watchdog-3.0.0-py3-none-win_amd64.whl", hash = "sha256:4c9956d27be0bb08fc5f30d9d0179a855436e655f046d288e2bcc11adfae893c"}, - {file = "watchdog-3.0.0-py3-none-win_ia64.whl", hash = "sha256:5d9f3a10e02d7371cd929b5d8f11e87d4bad890212ed3901f9b4d68767bee759"}, - {file = "watchdog-3.0.0.tar.gz", hash = "sha256:4d98a320595da7a7c5a18fc48cb633c2e73cda78f93cac2ef42d42bf609a33f9"}, +python-versions = ">=3.9" +files = [ + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d961f4123bb3c447d9fcdcb67e1530c366f10ab3a0c7d1c0c9943050936d4877"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72990192cb63872c47d5e5fefe230a401b87fd59d257ee577d61c9e5564c62e5"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6bec703ad90b35a848e05e1b40bf0050da7ca28ead7ac4be724ae5ac2653a1a0"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:dae7a1879918f6544201d33666909b040a46421054a50e0f773e0d870ed7438d"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c4a440f725f3b99133de610bfec93d570b13826f89616377715b9cd60424db6e"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8b2918c19e0d48f5f20df458c84692e2a054f02d9df25e6c3c930063eca64c1"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aa9cd6e24126d4afb3752a3e70fce39f92d0e1a58a236ddf6ee823ff7dba28ee"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f627c5bf5759fdd90195b0c0431f99cff4867d212a67b384442c51136a098ed7"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d7594a6d32cda2b49df3fd9abf9b37c8d2f3eab5df45c24056b4a671ac661619"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba32efcccfe2c58f4d01115440d1672b4eb26cdd6fc5b5818f1fb41f7c3e1889"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:963f7c4c91e3f51c998eeff1b3fb24a52a8a34da4f956e470f4b068bb47b78ee"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8c47150aa12f775e22efff1eee9f0f6beee542a7aa1a985c271b1997d340184f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:14dd4ed023d79d1f670aa659f449bcd2733c33a35c8ffd88689d9d243885198b"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b84bff0391ad4abe25c2740c7aec0e3de316fdf7764007f41e248422a7760a7f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3e8d5ff39f0a9968952cce548e8e08f849141a4fcc1290b1c17c032ba697b9d7"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fb223456db6e5f7bd9bbd5cd969f05aae82ae21acc00643b60d81c770abd402b"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9814adb768c23727a27792c77812cf4e2fd9853cd280eafa2bcfa62a99e8bd6e"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:901ee48c23f70193d1a7bc2d9ee297df66081dd5f46f0ca011be4f70dec80dab"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:638bcca3d5b1885c6ec47be67bf712b00a9ab3d4b22ec0881f4889ad870bc7e8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5597c051587f8757798216f2485e85eac583c3b343e9aa09127a3a6f82c65ee8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:53ed1bf71fcb8475dd0ef4912ab139c294c87b903724b6f4a8bd98e026862e6d"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:29e4a2607bd407d9552c502d38b45a05ec26a8e40cc7e94db9bb48f861fa5abc"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:b6dc8f1d770a8280997e4beae7b9a75a33b268c59e033e72c8a10990097e5fde"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:d2ab34adc9bf1489452965cdb16a924e97d4452fcf88a50b21859068b50b5c3b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:7d1aa7e4bb0f0c65a1a91ba37c10e19dabf7eaaa282c5787e51371f090748f4b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:726eef8f8c634ac6584f86c9c53353a010d9f311f6c15a034f3800a7a891d941"}, + {file = "watchdog-5.0.2-py3-none-win32.whl", hash = "sha256:bda40c57115684d0216556671875e008279dea2dc00fcd3dde126ac8e0d7a2fb"}, + {file = "watchdog-5.0.2-py3-none-win_amd64.whl", hash = "sha256:d010be060c996db725fbce7e3ef14687cdcc76f4ca0e4339a68cc4532c382a73"}, + {file = "watchdog-5.0.2-py3-none-win_ia64.whl", hash = "sha256:3960136b2b619510569b90f0cd96408591d6c251a75c97690f4553ca88889769"}, + {file = "watchdog-5.0.2.tar.gz", hash = "sha256:dcebf7e475001d2cdeb020be630dc5b687e9acdd60d16fea6bb4508e7b94cf76"}, ] [package.extras] @@ -2623,18 +2693,18 @@ watchmedo = ["PyYAML (>=3.10)"] [[package]] name = "webcolors" -version = "1.13" +version = "24.8.0" description = "A library for working with the color formats defined by HTML and CSS." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "webcolors-1.13-py3-none-any.whl", hash = "sha256:29bc7e8752c0a1bd4a1f03c14d6e6a72e93d82193738fa860cbff59d0fcc11bf"}, - {file = "webcolors-1.13.tar.gz", hash = "sha256:c225b674c83fa923be93d235330ce0300373d02885cef23238813b0d5668304a"}, + {file = "webcolors-24.8.0-py3-none-any.whl", hash = "sha256:fc4c3b59358ada164552084a8ebee637c221e4059267d0f8325b3b560f6c7f0a"}, + {file = "webcolors-24.8.0.tar.gz", hash = "sha256:08b07af286a01bcd30d583a7acadf629583d1f79bfef27dd2c2c5c263817277d"}, ] [package.extras] docs = ["furo", "sphinx", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-notfound-page", "sphinxext-opengraph"] -tests = ["pytest", "pytest-cov"] +tests = ["coverage[toml]"] [[package]] name = "wrapt" @@ -2735,18 +2805,22 @@ dev = ["doc8", "flake8", "flake8-import-order", "rstcheck[sphinx]", "sphinx"] [[package]] name = "zipp" -version = "3.19.1" +version = "3.20.2" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.8" files = [ - {file = "zipp-3.19.1-py3-none-any.whl", hash = "sha256:2828e64edb5386ea6a52e7ba7cdb17bb30a73a858f5eb6eb93d8d36f5ea26091"}, - {file = "zipp-3.19.1.tar.gz", hash = "sha256:35427f6d5594f4acf82d25541438348c26736fa9b3afa2754bcd63cdb99d8e8f"}, + {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, + {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, ] [package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -test = ["big-O", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] +type = ["pytest-mypy"] [extras] docs = [] diff --git a/project/graphql/biolink_model.graphql b/project/graphql/biolink_model.graphql index 919bbdc58..1013e2d71 100644 --- a/project/graphql/biolink_model.graphql +++ b/project/graphql/biolink_model.graphql @@ -1992,6 +1992,50 @@ type Disease inTaxonLabel: LabelType } +type DiseaseAssociatedWithResponseToChemicalEntityAssociation + { + id: String! + iri: IriType + name: LabelType + description: NarrativeText + hasAttribute: [Attribute] + deprecated: Boolean + negated: Boolean + qualifier: String + qualifiers: [OntologyClass] + publications: [Publication] + hasEvidence: [EvidenceType] + knowledgeSource: String + primaryKnowledgeSource: String + aggregatorKnowledgeSource: [String] + knowledgeLevel: KnowledgeLevelEnum! + agentType: AgentTypeEnum! + timepoint: TimeType + originalSubject: String + originalPredicate: Uriorcurie + originalObject: String + subjectCategory: OntologyClass + objectCategory: OntologyClass + subjectClosure: [String] + objectClosure: [String] + subjectCategoryClosure: [OntologyClass] + objectCategoryClosure: [OntologyClass] + subjectNamespace: String + objectNamespace: String + subjectLabelClosure: [String] + objectLabelClosure: [String] + retrievalSourceIds: [RetrievalSource] + pValue: Float + adjustedPValue: Float + type: [String] + category: [Uriorcurie] + responseContextQualifier: ResponseEnum + responseTargetContextQualifier: ResponseTargetEnum + subject: Disease! + object: ChemicalEntity! + predicate: PredicateType! + } + type DiseaseOrPhenotypicFeature { id: String! diff --git a/project/jsonld/biolink_model.context.jsonld b/project/jsonld/biolink_model.context.jsonld index 73d88e2d9..329d37e6b 100644 --- a/project/jsonld/biolink_model.context.jsonld +++ b/project/jsonld/biolink_model.context.jsonld @@ -1,7 +1,7 @@ { "comments": { "description": "Auto generated by LinkML jsonld context generator", - "generation_date": "2024-09-23T16:33:19", + "generation_date": "2024-09-23T16:39:56", "source": "biolink_model.yaml" }, "@context": { @@ -715,6 +715,10 @@ "@type": "@id", "@id": "associated_with_resistance_to" }, + "associated_with_response_to": { + "@type": "@id", + "@id": "associated_with_response_to" + }, "associated_with_sensitivity_to": { "@type": "@id", "@id": "associated_with_sensitivity_to" @@ -1536,7 +1540,6 @@ "@id": "interbase_coordinate" }, "iri": { - "@type": "xsd:anyURI", "@id": "iri" }, "is_active_ingredient_of": { @@ -1940,7 +1943,6 @@ "@id": "precedes" }, "predicate": { - "@type": "xsd:anyURI", "@id": "rdf:predicate" }, "predicate_mappings": { @@ -2093,6 +2095,18 @@ "@type": "@id", "@id": "response_affected_by" }, + "response_associated_with": { + "@type": "@id", + "@id": "response_associated_with" + }, + "response_context_qualifier": { + "@context": { + "text": "skos:notation", + "description": "skos:prefLabel", + "meaning": "@id" + }, + "@id": "response_context_qualifier" + }, "response_decreased_by": { "@type": "@id", "@id": "response_decreased_by" @@ -2101,6 +2115,14 @@ "@type": "@id", "@id": "response_increased_by" }, + "response_target_context_qualifier": { + "@context": { + "text": "skos:notation", + "description": "skos:prefLabel", + "meaning": "@id" + }, + "@id": "response_target_context_qualifier" + }, "retrieval_source_ids": { "@type": "@id", "@id": "retrieval_source_ids" @@ -2327,11 +2349,9 @@ "@id": "taxon_of" }, "temporal_context_qualifier": { - "@type": "xsd:time", "@id": "temporal_context_qualifier" }, "temporal_interval_qualifier": { - "@type": "xsd:time", "@id": "temporal_interval_qualifier" }, "temporally_related_to": { @@ -2347,7 +2367,6 @@ "@id": "tested_by_preclinical_trials_of" }, "timepoint": { - "@type": "xsd:time", "@id": "timepoint" }, "total_sample_size": { @@ -2672,6 +2691,9 @@ "Disease": { "@id": "Disease" }, + "DiseaseAssociatedWithResponseToChemicalEntityAssociation": { + "@id": "DiseaseAssociatedWithResponseToChemicalEntityAssociation" + }, "DiseaseOrPhenotypicFeature": { "@id": "DiseaseOrPhenotypicFeature" }, diff --git a/project/jsonld/biolink_model.jsonld b/project/jsonld/biolink_model.jsonld index afa559f49..a5a76e79c 100644 --- a/project/jsonld/biolink_model.jsonld +++ b/project/jsonld/biolink_model.jsonld @@ -592,7 +592,7 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "typeof": "uriorcurie", "base": "URIorCURIE", - "uri": "http://www.w3.org/2001/XMLSchema#anyURI", + "uri": "http://www.w3.org/2001/XMLSchema#string", "repr": "str", "@type": "TypeDefinition" }, @@ -613,7 +613,7 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "typeof": "uriorcurie", "base": "URIorCURIE", - "uri": "http://www.w3.org/2001/XMLSchema#anyURI", + "uri": "http://www.w3.org/2001/XMLSchema#string", "repr": "str", "@type": "TypeDefinition" }, @@ -687,7 +687,7 @@ "from_schema": "https://w3id.org/biolink/biolink-model", "typeof": "time", "base": "XSDTime", - "uri": "http://www.w3.org/2001/XMLSchema#time", + "uri": "http://www.w3.org/2001/XMLSchema#string", "repr": "str", "@type": "TypeDefinition" }, @@ -1010,6 +1010,46 @@ } ], "enums": [ + { + "name": "ResponseEnum", + "definition_uri": "https://w3id.org/biolink/vocab/ResponseEnum", + "description": "A response to a treatment or intervention", + "from_schema": "https://w3id.org/biolink/biolink-model", + "permissible_values": [ + { + "text": "therapeutic_response", + "description": "A positive response to a treatment or intervention" + }, + { + "text": "negative", + "description": "A negative response to a treatment or intervention" + } + ] + }, + { + "name": "ResponseTargetEnum", + "definition_uri": "https://w3id.org/biolink/vocab/ResponseTargetEnum", + "description": "The target of a treatment or intervention", + "from_schema": "https://w3id.org/biolink/biolink-model", + "permissible_values": [ + { + "text": "cohort", + "description": "A group of individuals that are the target of a treatment or intervention" + }, + { + "text": "cell line", + "description": "A cell line that is the target of a treatment or intervention" + }, + { + "text": "individual", + "description": "An individual that is the target of a treatment or intervention" + }, + { + "text": "sample", + "description": "A biological materialsample that is the target of a treatment or intervention" + } + ] + }, { "name": "ApprovalStatusEnum", "definition_uri": "https://w3id.org/biolink/vocab/ApprovalStatusEnum", @@ -3625,6 +3665,36 @@ "range": "string", "@type": "SlotDefinition" }, + { + "name": "response_context_qualifier", + "definition_uri": "https://w3id.org/biolink/vocab/response_context_qualifier", + "description": "a biological response (general, study, cohort, etc.) with a specific set of characteristics to constrain an association.", + "from_schema": "https://w3id.org/biolink/biolink-model", + "is_a": "context_qualifier", + "domain": "Association", + "slot_uri": "https://w3id.org/biolink/vocab/response_context_qualifier", + "owner": "DiseaseAssociatedWithResponseToChemicalEntityAssociation", + "domain_of": [ + "DiseaseAssociatedWithResponseToChemicalEntityAssociation" + ], + "range": "ResponseEnum", + "@type": "SlotDefinition" + }, + { + "name": "response_target_context_qualifier", + "definition_uri": "https://w3id.org/biolink/vocab/response_target_context_qualifier", + "description": "a biological response target (a patient, a cohort, a model system, a cell line, a sample of biological material, etc.)", + "from_schema": "https://w3id.org/biolink/biolink-model", + "is_a": "context_qualifier", + "domain": "Association", + "slot_uri": "https://w3id.org/biolink/vocab/response_target_context_qualifier", + "owner": "DiseaseAssociatedWithResponseToChemicalEntityAssociation", + "domain_of": [ + "DiseaseAssociatedWithResponseToChemicalEntityAssociation" + ], + "range": "ResponseTargetEnum", + "@type": "SlotDefinition" + }, { "name": "population_context_qualifier", "definition_uri": "https://w3id.org/biolink/vocab/population_context_qualifier", @@ -6324,6 +6394,45 @@ "multivalued": true, "@type": "SlotDefinition" }, + { + "name": "associated_with_response_to", + "definition_uri": "https://w3id.org/biolink/vocab/associated_with_response_to", + "annotations": [ + { + "tag": "canonical_predicate", + "value": true, + "@type": "Annotation" + } + ], + "description": "A statistical association used to indicate that the object of a statement using this predicate induces a response of some kind in the subject entity. Intentionally broad in definition, this predicate should be used with qualifiers to narrow the type of response (E.g. whether the response is therapeutic, phenotypic, detrimental, resistant, etc. is captured in context, direction, and aspect qualifiers).", + "comments": [ + "subject: NCBIGene:2064 # HER2 subject_aspect: Amplification predicate: associated with response to object: CHEBI:10035 # Trastuzumab response_type_qualifier: therapeutic_sensitivity response_direction_qualifer: increased response_target_qualifier: human patient disease_context_qualifier: MONDO:0007254 # breast cancer\nsubject: MONDO:0007254 predicate: associated with response to qualified_predicate: associated with object: CHEBI:10035 # Trastuzumab response_context_qualifier: therapeutic_sensitivity" + ], + "from_schema": "https://w3id.org/biolink/biolink-model", + "is_a": "associated_with", + "domain": "NamedThing", + "slot_uri": "https://w3id.org/biolink/vocab/associated_with_response_to", + "inherited": true, + "owner": "associated_with_response_to", + "inverse": "response_associated_with", + "range": "NamedThing", + "multivalued": true, + "@type": "SlotDefinition" + }, + { + "name": "response_associated_with", + "definition_uri": "https://w3id.org/biolink/vocab/response_associated_with", + "from_schema": "https://w3id.org/biolink/biolink-model", + "is_a": "associated_with", + "domain": "NamedThing", + "slot_uri": "https://w3id.org/biolink/vocab/response_associated_with", + "inherited": true, + "owner": "response_associated_with", + "inverse": "associated_with_response_to", + "range": "NamedThing", + "multivalued": true, + "@type": "SlotDefinition" + }, { "name": "associated_with_sensitivity_to", "definition_uri": "https://w3id.org/biolink/vocab/associated_with_sensitivity_to", @@ -6342,7 +6451,7 @@ "broad_mappings": [ "http://purl.obolibrary.org/obo/PATO_0000085" ], - "is_a": "associated_with", + "is_a": "associated_with_response_to", "domain": "NamedThing", "slot_uri": "https://w3id.org/biolink/vocab/associated_with_sensitivity_to", "inherited": true, @@ -6378,7 +6487,7 @@ ], "description": "A relation that holds between a named thing and a chemical that specifies that the change in the named thing is found to be associated with the degree of resistance to treatment by the chemical.", "from_schema": "https://w3id.org/biolink/biolink-model", - "is_a": "associated_with", + "is_a": "associated_with_response_to", "domain": "NamedThing", "slot_uri": "https://w3id.org/biolink/vocab/associated_with_resistance_to", "inherited": true, @@ -14135,6 +14244,118 @@ "multivalued": true, "@type": "SlotDefinition" }, + { + "name": "disease_associated_with_response_to_chemical_entity_association_subject", + "definition_uri": "https://w3id.org/biolink/vocab/subject", + "local_names": { + "ga4gh": { + "local_name_source": "ga4gh", + "local_name_value": "annotation subject" + }, + "neo4j": { + "local_name_source": "neo4j", + "local_name_value": "node with outgoing relationship" + } + }, + "description": "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.", + "from_schema": "https://w3id.org/biolink/biolink-model", + "mappings": [ + "http://www.w3.org/1999/02/22-rdf-syntax-ns#subject" + ], + "exact_mappings": [ + "http://www.w3.org/2002/07/owl#annotatedSource", + "http://purl.org/oban/association_has_subject" + ], + "is_a": "subject", + "domain": "DiseaseAssociatedWithResponseToChemicalEntityAssociation", + "slot_uri": "http://www.w3.org/1999/02/22-rdf-syntax-ns#subject", + "alias": "subject", + "owner": "DiseaseAssociatedWithResponseToChemicalEntityAssociation", + "domain_of": [ + "DiseaseAssociatedWithResponseToChemicalEntityAssociation" + ], + "is_usage_slot": true, + "usage_slot_name": "subject", + "range": "Disease", + "required": true, + "@type": "SlotDefinition" + }, + { + "name": "disease_associated_with_response_to_chemical_entity_association_object", + "definition_uri": "https://w3id.org/biolink/vocab/object", + "local_names": { + "ga4gh": { + "local_name_source": "ga4gh", + "local_name_value": "descriptor" + }, + "neo4j": { + "local_name_source": "neo4j", + "local_name_value": "node with incoming relationship" + } + }, + "description": "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.", + "from_schema": "https://w3id.org/biolink/biolink-model", + "mappings": [ + "http://www.w3.org/1999/02/22-rdf-syntax-ns#object" + ], + "exact_mappings": [ + "http://www.w3.org/2002/07/owl#annotatedTarget", + "http://purl.org/oban/association_has_object" + ], + "is_a": "object", + "domain": "DiseaseAssociatedWithResponseToChemicalEntityAssociation", + "slot_uri": "http://www.w3.org/1999/02/22-rdf-syntax-ns#object", + "alias": "object", + "owner": "DiseaseAssociatedWithResponseToChemicalEntityAssociation", + "domain_of": [ + "DiseaseAssociatedWithResponseToChemicalEntityAssociation" + ], + "is_usage_slot": true, + "usage_slot_name": "object", + "range": "ChemicalEntity", + "required": true, + "@type": "SlotDefinition" + }, + { + "name": "disease_associated_with_response_to_chemical_entity_association_predicate", + "definition_uri": "https://w3id.org/biolink/vocab/predicate", + "local_names": { + "ga4gh": { + "local_name_source": "ga4gh", + "local_name_value": "annotation predicate" + }, + "translator": { + "local_name_source": "translator", + "local_name_value": "predicate" + } + }, + "description": "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.", + "notes": [ + "Has a value from the Biolink related_to hierarchy. In RDF, this corresponds to rdf:predicate and in Neo4j this corresponds to the relationship type. The convention is for an edge label in snake_case form. For example, biolink:related_to, biolink:causes, biolink:treats" + ], + "from_schema": "https://w3id.org/biolink/biolink-model", + "mappings": [ + "http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate" + ], + "exact_mappings": [ + "http://www.w3.org/2002/07/owl#annotatedProperty", + "http://purl.org/oban/association_has_predicate" + ], + "is_a": "predicate", + "domain": "DiseaseAssociatedWithResponseToChemicalEntityAssociation", + "slot_uri": "http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate", + "alias": "predicate", + "owner": "DiseaseAssociatedWithResponseToChemicalEntityAssociation", + "domain_of": [ + "DiseaseAssociatedWithResponseToChemicalEntityAssociation" + ], + "subproperty_of": "associated_with_response_to", + "is_usage_slot": true, + "usage_slot_name": "predicate", + "range": "predicate_type", + "required": true, + "@type": "SlotDefinition" + }, { "name": "chemical_entity_assesses_named_thing_association_subject", "definition_uri": "https://w3id.org/biolink/vocab/subject", @@ -29849,6 +30070,65 @@ "class_uri": "https://w3id.org/biolink/vocab/Association", "@type": "ClassDefinition" }, + { + "name": "DiseaseAssociatedWithResponseToChemicalEntityAssociation", + "definition_uri": "https://w3id.org/biolink/vocab/DiseaseAssociatedWithResponseToChemicalEntityAssociation", + "description": "A statistical association between a disease and a chemical entity where the chemical entity has a therapeutic or adverse effect on the disease progression, symptoms or outcomes in a patient, cell line, or any model system.", + "from_schema": "https://w3id.org/biolink/biolink-model", + "is_a": "Association", + "slots": [ + "id", + "iri", + "name", + "description", + "has_attribute", + "deprecated", + "negated", + "qualifier", + "qualifiers", + "publications", + "has_evidence", + "knowledge_source", + "primary_knowledge_source", + "aggregator_knowledge_source", + "knowledge_level", + "agent_type", + "timepoint", + "original_subject", + "original_predicate", + "original_object", + "subject_category", + "object_category", + "subject_closure", + "object_closure", + "subject_category_closure", + "object_category_closure", + "subject_namespace", + "object_namespace", + "subject_label_closure", + "object_label_closure", + "retrieval_source_ids", + "p_value", + "adjusted_p_value", + "association_type", + "association_category", + "response_context_qualifier", + "response_target_context_qualifier", + "disease_associated_with_response_to_chemical_entity_association_subject", + "disease_associated_with_response_to_chemical_entity_association_object", + "disease_associated_with_response_to_chemical_entity_association_predicate" + ], + "slot_usage": {}, + "class_uri": "https://w3id.org/biolink/vocab/DiseaseAssociatedWithResponseToChemicalEntityAssociation", + "defining_slots": [ + "subject", + "predicate", + "object", + "response_context_qualifier", + "response_target_context_qualifier" + ], + "@type": "ClassDefinition" + }, { "name": "ChemicalEntityAssessesNamedThingAssociation", "definition_uri": "https://w3id.org/biolink/vocab/ChemicalEntityAssessesNamedThingAssociation", @@ -35593,9 +35873,9 @@ ], "metamodel_version": "1.7.0", "source_file": "biolink_model.yaml", - "source_file_date": "2024-09-23T16:33:15", - "source_file_size": 399792, - "generation_date": "2024-09-23T16:33:21", + "source_file_date": "2024-09-23T16:39:51", + "source_file_size": 403463, + "generation_date": "2024-09-23T16:39:58", "@type": "SchemaDefinition", "@context": [ "project/jsonld/biolink_model.context.jsonld", diff --git a/project/jsonschema/biolink_model.schema.json b/project/jsonschema/biolink_model.schema.json index d98e6bad3..836a8b5d0 100644 --- a/project/jsonschema/biolink_model.schema.json +++ b/project/jsonschema/biolink_model.schema.json @@ -13403,6 +13403,324 @@ "title": "Disease", "type": "object" }, + "DiseaseAssociatedWithResponseToChemicalEntityAssociation": { + "additionalProperties": false, + "description": "A statistical association between a disease and a chemical entity where the chemical entity has a therapeutic or adverse effect on the disease progression, symptoms or outcomes in a patient, cell line, or any model system.", + "properties": { + "adjusted_p_value": { + "description": "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<.", + "type": [ + "number", + "null" + ] + }, + "agent_type": { + "$ref": "#/$defs/AgentTypeEnum", + "description": "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." + }, + "aggregator_knowledge_source": { + "description": "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form.", + "items": { + "type": "string" + }, + "type": [ + "array", + "null" + ] + }, + "category": { + "description": "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}", + "enum": [ + "biolink:DiseaseAssociatedWithResponseToChemicalEntityAssociation" + ], + "items": { + "type": "string" + }, + "type": [ + "array", + "null" + ] + }, + "deprecated": { + "description": "A boolean flag indicating that an entity is no longer considered current or valid.", + "type": [ + "boolean", + "null" + ] + }, + "description": { + "description": "a human-readable description of an entity", + "type": [ + "string", + "null" + ] + }, + "has_attribute": { + "description": "connects any entity to an attribute", + "items": { + "type": "string" + }, + "type": [ + "array", + "null" + ] + }, + "has_evidence": { + "description": "connects an association to an instance of supporting evidence", + "items": { + "type": "string" + }, + "type": [ + "array", + "null" + ] + }, + "id": { + "description": "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI", + "type": "string" + }, + "iri": { + "description": "An IRI for an entity. This is determined by the id using expansion rules.", + "type": [ + "string", + "null" + ] + }, + "knowledge_level": { + "$ref": "#/$defs/KnowledgeLevelEnum", + "description": "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." + }, + "knowledge_source": { + "description": "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property.", + "type": [ + "string", + "null" + ] + }, + "name": { + "description": "A human-readable name for an attribute or entity.", + "type": [ + "string", + "null" + ] + }, + "negated": { + "description": "if set to true, then the association is negated i.e. is not true", + "type": [ + "boolean", + "null" + ] + }, + "object": { + "description": "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.", + "type": "string" + }, + "object_category": { + "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", + "type": [ + "string", + "null" + ] + }, + "object_category_closure": { + "description": "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", + "items": { + "type": "string" + }, + "type": [ + "array", + "null" + ] + }, + "object_closure": { + "description": "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", + "items": { + "type": "string" + }, + "type": [ + "array", + "null" + ] + }, + "object_label_closure": { + "description": "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", + "items": { + "type": "string" + }, + "type": [ + "array", + "null" + ] + }, + "object_namespace": { + "description": "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", + "type": [ + "string", + "null" + ] + }, + "original_object": { + "description": "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", + "type": [ + "string", + "null" + ] + }, + "original_predicate": { + "description": "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification.", + "type": [ + "string", + "null" + ] + }, + "original_subject": { + "description": "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification.", + "type": [ + "string", + "null" + ] + }, + "p_value": { + "description": "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone.", + "type": [ + "number", + "null" + ] + }, + "predicate": { + "description": "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes.", + "type": "string" + }, + "primary_knowledge_source": { + "description": "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources.", + "type": [ + "string", + "null" + ] + }, + "publications": { + "description": "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement.", + "items": { + "type": "string" + }, + "type": [ + "array", + "null" + ] + }, + "qualifier": { + "description": "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes", + "type": [ + "string", + "null" + ] + }, + "qualifiers": { + "description": "connects an association to qualifiers that modify or qualify the meaning of that association", + "items": { + "type": "string" + }, + "type": [ + "array", + "null" + ] + }, + "response_context_qualifier": { + "$ref": "#/$defs/ResponseEnum", + "description": "a biological response (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." + }, + "response_target_context_qualifier": { + "$ref": "#/$defs/ResponseTargetEnum", + "description": "a biological response target (a patient, a cohort, a model system, a cell line, a sample of biological material, etc.)" + }, + "retrieval_source_ids": { + "description": "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge.", + "items": { + "type": "string" + }, + "type": [ + "array", + "null" + ] + }, + "subject": { + "description": "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object.", + "type": "string" + }, + "subject_category": { + "description": "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", + "type": [ + "string", + "null" + ] + }, + "subject_category_closure": { + "description": "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", + "items": { + "type": "string" + }, + "type": [ + "array", + "null" + ] + }, + "subject_closure": { + "description": "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", + "items": { + "type": "string" + }, + "type": [ + "array", + "null" + ] + }, + "subject_label_closure": { + "description": "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", + "items": { + "type": "string" + }, + "type": [ + "array", + "null" + ] + }, + "subject_namespace": { + "description": "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX.", + "type": [ + "string", + "null" + ] + }, + "timepoint": { + "description": "a point in time", + "format": "time", + "type": [ + "string", + "null" + ] + }, + "type": { + "description": "rdf:type of biolink:Association should be fixed at rdf:Statement", + "items": { + "type": "string" + }, + "type": [ + "array", + "null" + ] + } + }, + "required": [ + "subject", + "predicate", + "object", + "knowledge_level", + "agent_type", + "id" + ], + "title": "DiseaseAssociatedWithResponseToChemicalEntityAssociation", + "type": "object" + }, "DiseaseOrPhenotypicFeature": { "additionalProperties": false, "description": "Either one of a disease or an individual phenotypic feature. Some knowledge resources such as Monarch treat these as distinct, others such as MESH conflate. Please see definitions of phenotypic feature and disease in this model for their independent descriptions. This class is helpful to enforce domains and ranges that may involve either a disease or a phenotypic feature.", @@ -43227,6 +43545,26 @@ "title": "ResourceRoleEnum", "type": "string" }, + "ResponseEnum": { + "description": "A response to a treatment or intervention", + "enum": [ + "therapeutic_response", + "negative" + ], + "title": "ResponseEnum", + "type": "string" + }, + "ResponseTargetEnum": { + "description": "The target of a treatment or intervention", + "enum": [ + "cohort", + "cell line", + "individual", + "sample" + ], + "title": "ResponseTargetEnum", + "type": "string" + }, "RetrievalSource": { "additionalProperties": false, "description": "Provides information about how a particular InformationResource served as a source from which knowledge expressed in an Edge, or data used to generate this knowledge, was retrieved.", diff --git a/project/owl/biolink_model.owl.ttl b/project/owl/biolink_model.owl.ttl index 75466a4ee..10049da75 100644 --- a/project/owl/biolink_model.owl.ttl +++ b/project/owl/biolink_model.owl.ttl @@ -1198,6 +1198,12 @@ biolink:resistance_associated_with a owl:ObjectProperty ; owl:inverseOf biolink:associated_with_resistance_to ; skos:inScheme . +biolink:response_associated_with a owl:DatatypeProperty ; + rdfs:label "response associated with" ; + rdfs:subPropertyOf biolink:associated_with ; + owl:inverseOf biolink:associated_with_response_to ; + skos:inScheme . + biolink:response_decreased_by a owl:ObjectProperty ; rdfs:label "response decreased by" ; rdfs:domain biolink:ChemicalEntityOrGeneOrGeneProduct ; @@ -1410,7 +1416,7 @@ biolink:supporting_text_section_type a owl:DatatypeProperty ; biolink:systematic_synonym a owl:DatatypeProperty ; rdfs:label "systematic synonym" ; rdfs:domain biolink:NamedThing ; - rdfs:range biolink:label_type ; + rdfs:range xsd:string ; rdfs:subPropertyOf biolink:node_property ; skos:definition "more commonly used for gene symbols in yeast" ; skos:inScheme . @@ -1631,7 +1637,7 @@ biolink:associated_with_resistance_to a owl:ObjectProperty ; rdfs:label "associated with resistance to" ; rdfs:domain biolink:NamedThing ; rdfs:range biolink:ChemicalEntity ; - rdfs:subPropertyOf biolink:associated_with ; + rdfs:subPropertyOf biolink:associated_with_response_to ; skos:definition "A relation that holds between a named thing and a chemical that specifies that the change in the named thing is found to be associated with the degree of resistance to treatment by the chemical." ; skos:inScheme ; biolink:canonical_predicate true . @@ -1640,7 +1646,7 @@ biolink:associated_with_sensitivity_to a owl:ObjectProperty ; rdfs:label "associated with sensitivity to" ; rdfs:domain biolink:NamedThing ; rdfs:range biolink:ChemicalEntity ; - rdfs:subPropertyOf biolink:associated_with ; + rdfs:subPropertyOf biolink:associated_with_response_to ; skos:broadMatch ; skos:definition "A relation that holds between a named thing and a chemical that specifies that the change in the named thing is found to be associated with the degree of sensitivity to treatment by the chemical." ; skos:inScheme ; @@ -2504,9 +2510,6 @@ biolink:subject_of_treatment_application_or_study_for_treatment_by a owl:ObjectP owl:inverseOf biolink:treats_or_applied_or_studied_to_treat ; skos:inScheme . -biolink:symbol_type a rdfs:Datatype ; - owl:equivalentClass xsd:string . - biolink:target_for a owl:ObjectProperty ; rdfs:label "target for" ; rdfs:domain biolink:Gene ; @@ -2601,16 +2604,16 @@ biolink:AccessibleDnaRegion a owl:Class ; rdfs:label "accessible dna region" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], biolink:RegulatoryRegion ; skos:altLabel "atac-seq accessible region", "dnase-seq accessible region" ; @@ -2659,8 +2662,11 @@ biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a owl:Class ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:subject ], @@ -2668,17 +2674,14 @@ biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a owl:Class ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], @@ -2689,31 +2692,31 @@ biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a owl:Class ; biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation a owl:Class ; rdfs:label "anatomical entity to anatomical entity part of association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], biolink:AnatomicalEntityToAnatomicalEntityAssociation ; skos:definition "A relationship between two anatomical entities where the relationship is mereological, i.e the two entities are related by parthood. This includes relationships between cellular components and cells, between cells and tissues, tissues and whole organisms" ; @@ -2805,26 +2808,26 @@ biolink:Bacterium a owl:Class ; biolink:BehaviorToBehavioralFeatureAssociation a owl:Class ; rdfs:label "behavior to behavioral feature association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; owl:allValuesFrom biolink:Behavior ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:BehavioralFeature ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:BehavioralFeature ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], biolink:Association ; skos:definition "An association between an mixture behavior and a behavioral feature manifested by the individual exhibited or has exhibited the behavior." ; skos:inScheme . @@ -2852,6 +2855,9 @@ biolink:BioticExposure a owl:Class ; biolink:Book a owl:Class ; rdfs:label "book" ; rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:id ], + [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:type ], [ a owl:Restriction ; @@ -2863,9 +2869,6 @@ biolink:Book a owl:Class ; [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:id ], biolink:Publication ; skos:definition "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; skos:inScheme . @@ -2891,25 +2894,25 @@ biolink:CaseToPhenotypicFeatureAssociation a owl:Class ; biolink:CausalGeneToDiseaseAssociation a owl:Class ; rdfs:label "causal gene to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; @@ -3010,16 +3013,16 @@ biolink:CellLineAsAModelOfDiseaseAssociation a owl:Class ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation ; skos:inScheme . @@ -3032,47 +3035,59 @@ biolink:CellLineToEntityAssociationMixin a owl:Class ; biolink:ChemicalAffectsGeneAssociation a owl:Class ; rdfs:label "chemical affects gene association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:subject_part_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_derivative_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; - owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:anatomical_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:object_part_qualifier ], @@ -3080,107 +3095,98 @@ biolink:ChemicalAffectsGeneAssociation a owl:Class ; owl:minCardinality 0 ; owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualified_predicate ], + owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:subject_direction_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:anatomical_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:causal_mechanism_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:species_context_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_part_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:subject_direction_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], @@ -3188,11 +3194,8 @@ biolink:ChemicalAffectsGeneAssociation a owl:Class ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_part_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; - owl:onProperty biolink:subject_part_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "Describes an effect that a chemical has on a gene or gene product (e.g. an impact of on its abundance, activity,localization, processing, expression, etc.)" ; skos:inScheme . @@ -3200,73 +3203,73 @@ biolink:ChemicalAffectsGeneAssociation a owl:Class ; biolink:ChemicalEntityAssessesNamedThingAssociation a owl:Class ; rdfs:label "chemical entity assesses named thing association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], biolink:Association ; skos:inScheme . biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a owl:Class ; rdfs:label "chemical entity or gene or gene product regulates gene association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:object_direction_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], biolink:Association ; skos:definition "A regulatory relationship between two genes" ; skos:inScheme . @@ -3275,106 +3278,106 @@ biolink:ChemicalGeneInteractionAssociation a owl:Class ; rdfs:label "chemical gene interaction association" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_derivative_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; - owl:onProperty biolink:object_part_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:object ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_derivative_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_part_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:minCardinality 0 ; owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_part_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; + owl:onProperty biolink:object_part_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:onProperty biolink:object_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:object_context_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_context_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; - owl:onProperty biolink:object_form_or_variant_qualifier ], biolink:Association ; skos:definition "describes a physical interaction between a chemical entity and a gene or gene product. Any biological or chemical effect resulting from such an interaction are out of scope, and covered by the ChemicalAffectsGeneAssociation type (e.g. impact of a chemical on the abundance, activity, structure, etc, of either participant in the interaction)" ; skos:exactMatch SIO:001257 ; @@ -3383,20 +3386,20 @@ biolink:ChemicalGeneInteractionAssociation a owl:Class ; biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "chemical or drug or treatment side effect disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation ; skos:definition "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary, typically (but not always) undesirable effect." ; skos:inScheme . @@ -3424,11 +3427,14 @@ biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation biolink:ChemicalToChemicalDerivationAssociation a owl:Class ; rdfs:label "chemical to chemical derivation association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:catalyst_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], @@ -3436,26 +3442,23 @@ biolink:ChemicalToChemicalDerivationAssociation a owl:Class ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:catalyst_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:MacromolecularMachineMixin ; owl:onProperty biolink:catalyst_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], biolink:ChemicalToChemicalAssociation ; skos:definition "A causal relationship between two chemical entities, where the subject represents the upstream entity and the object represents the downstream. For any such association there is an implicit reaction: IF R has-input C1 AND R has-output C2 AND R enabled-by P AND R type Reaction THEN C1 derives-into C2 catalyst qualifier P" ; skos:inScheme . @@ -3463,20 +3466,20 @@ biolink:ChemicalToChemicalDerivationAssociation a owl:Class ; biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "chemical to disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], biolink:Association ; skos:definition "An interaction between a chemical entity and a phenotype or disease, where the presence of the chemical gives rise to or exacerbates the phenotype." ; skos:inScheme ; @@ -3485,26 +3488,26 @@ biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; biolink:ChemicalToPathwayAssociation a owl:Class ; rdfs:label "chemical to pathway association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:Pathway ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], biolink:Association ; skos:definition "An interaction between a chemical entity and a biological process or pathway." ; skos:exactMatch SIO:001250 ; @@ -3539,10 +3542,10 @@ biolink:ChiSquaredAnalysisResult a owl:Class ; biolink:ClinicalFinding a owl:Class ; rdfs:label "clinical finding" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:ClinicalAttribute ; + owl:minCardinality 0 ; owl:onProperty biolink:has_attribute ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:ClinicalAttribute ; owl:onProperty biolink:has_attribute ], biolink:PhenotypicFeature ; skos:definition "this category is currently considered broad enough to tag clinical lab measurements and other biological attributes taken as 'clinical traits' with some statistical score, for example, a p value in genetic associations." ; @@ -3551,10 +3554,10 @@ biolink:ClinicalFinding a owl:Class ; biolink:ClinicalMeasurement a owl:Class ; rdfs:label "clinical measurement" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom owl:Thing ; owl:onProperty biolink:has_attribute_type ], [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; + owl:minCardinality 1 ; owl:onProperty biolink:has_attribute_type ], [ a owl:Restriction ; owl:maxCardinality 1 ; @@ -3613,36 +3616,36 @@ biolink:ContributorAssociation a owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:qualifiers ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Agent ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:qualifiers ], [ a owl:Restriction ; owl:allValuesFrom biolink:InformationContentEntity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:qualifiers ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Agent ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:qualifiers ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "Any association between an entity (such as a publication) and various agents that contribute to its realisation" ; skos:inScheme . @@ -3650,29 +3653,29 @@ biolink:ContributorAssociation a owl:Class ; biolink:CorrelatedGeneToDiseaseAssociation a owl:Class ; rdfs:label "correlated gene to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:GeneToDiseaseAssociation ; skos:inScheme . @@ -3686,6 +3689,57 @@ biolink:CorrelatedGeneToDiseaseAssociation a owl:Class ; rdfs:subClassOf biolink:DirectionQualifierEnum, . +biolink:DiseaseAssociatedWithResponseToChemicalEntityAssociation a owl:Class ; + rdfs:label "disease associated with response to chemical entity association" ; + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ResponseTargetEnum ; + owl:onProperty biolink:response_target_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ResponseEnum ; + owl:onProperty biolink:response_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:response_target_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:response_target_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:response_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:response_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + biolink:Association ; + skos:definition "A statistical association between a disease and a chemical entity where the chemical entity has a therapeutic or adverse effect on the disease progression, symptoms or outcomes in a patient, cell line, or any model system." ; + skos:inScheme . + biolink:DiseaseOrPhenotypicFeatureExposure a owl:Class ; rdfs:label "disease or phenotypic feature exposure" ; rdfs:subClassOf [ a owl:Restriction ; @@ -3703,6 +3757,9 @@ biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:allValuesFrom biolink:GeneticInheritance ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], @@ -3710,13 +3767,10 @@ biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a owl:Class ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; @@ -3731,14 +3785,14 @@ biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a owl:Class ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin ], biolink:Association ; skos:definition "An association between either a disease or a phenotypic feature and an anatomical entity, where the disease/feature manifests in that site." ; skos:inScheme . @@ -3758,17 +3812,20 @@ biolink:DiseaseToExposureEventAssociation a owl:Class ; biolink:DiseaseToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "disease to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Onset ; - owl:onProperty biolink:onset_qualifier ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom biolink:Disease ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:PhenotypicFeature ; - owl:onProperty biolink:object ], + owl:minCardinality 0 ; + owl:onProperty biolink:onset_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:FrequencyQuantifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:onset_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], @@ -3776,23 +3833,20 @@ biolink:DiseaseToPhenotypicFeatureAssociation a owl:Class ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FrequencyQuantifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:onset_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Onset ; owl:onProperty biolink:onset_qualifier ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin ], + owl:allValuesFrom biolink:PhenotypicFeature ; + owl:onProperty biolink:object ], biolink:Association ; skos:closeMatch dcid:DiseaseSymptomAssociation ; skos:definition "An association between a disease and a phenotypic feature in which the phenotypic feature is associated with the disease in some way." ; @@ -3892,35 +3946,35 @@ biolink:DrugToGeneInteractionExposure a owl:Class ; biolink:DruggableGeneToDiseaseAssociation a owl:Class ; rdfs:label "druggable gene to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:DruggableGeneCategoryEnum ; + owl:minCardinality 0 ; owl:onProperty biolink:has_evidence ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:DruggableGeneCategoryEnum ; + owl:onProperty biolink:has_evidence ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_evidence ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:GeneToDiseaseAssociation ; skos:inScheme . @@ -3931,13 +3985,13 @@ biolink:EntityToDiseaseAssociation a owl:Class ; owl:onProperty biolink:clinical_approval_status ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:clinical_approval_status ], + owl:onProperty biolink:max_research_phase ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:clinical_approval_status ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:max_research_phase ], + owl:onProperty biolink:clinical_approval_status ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:max_research_phase ], @@ -3965,19 +4019,19 @@ biolink:EntityToPhenotypicFeatureAssociation a owl:Class ; owl:minCardinality 0 ; owl:onProperty biolink:clinical_approval_status ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MaxResearchPhaseEnum ; + owl:maxCardinality 1 ; owl:onProperty biolink:max_research_phase ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:max_research_phase ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:ClinicalApprovalStatusEnum ; owl:onProperty biolink:clinical_approval_status ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:MaxResearchPhaseEnum ; owl:onProperty biolink:max_research_phase ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ClinicalApprovalStatusEnum ; + owl:maxCardinality 1 ; owl:onProperty biolink:clinical_approval_status ], biolink:Association ; skos:inScheme . @@ -4019,6 +4073,9 @@ biolink:Event a owl:Class ; biolink:ExonToTranscriptRelationship a owl:Class ; rdfs:label "exon to transcript relationship" ; rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; owl:allValuesFrom biolink:Transcript ; owl:onProperty biolink:object ], [ a owl:Restriction ; @@ -4027,9 +4084,6 @@ biolink:ExonToTranscriptRelationship a owl:Class ; [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:Exon ; owl:onProperty biolink:subject ], @@ -4043,22 +4097,22 @@ biolink:ExonToTranscriptRelationship a owl:Class ; biolink:ExposureEventToOutcomeAssociation a owl:Class ; rdfs:label "exposure event to outcome association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:population_context_qualifier ], + [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToOutcomeAssociationMixin ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:temporal_context_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:time_type ; - owl:onProperty biolink:temporal_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:population_context_qualifier ], + owl:onProperty biolink:temporal_context_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; owl:onProperty biolink:population_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:temporal_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:temporal_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; @@ -4070,13 +4124,13 @@ biolink:ExposureEventToOutcomeAssociation a owl:Class ; biolink:ExposureEventToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "exposure event to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:ExposureEvent ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:ExposureEvent ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; @@ -4137,176 +4191,176 @@ biolink:Fungus a owl:Class ; biolink:GeneAffectsChemicalAssociation a owl:Class ; rdfs:label "gene affects chemical association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:species_context_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_context_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:species_context_qualifier ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:anatomical_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:object_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:subject_context_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:species_context_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_derivative_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:object ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:object_context_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; owl:onProperty biolink:subject_part_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_part_qualifier ], + owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:subject_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:anatomical_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], biolink:Association ; skos:definition "Describes an effect that a gene or gene product has on a chemical entity (e.g. an impact of on its abundance, activity, localization, processing, transport, etc.)" ; skos:inScheme . @@ -4318,56 +4372,56 @@ biolink:GeneAsAModelOfDiseaseAssociation a owl:Class ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], biolink:GeneToDiseaseAssociation ; skos:inScheme . biolink:GeneHasVariantThatContributesToDiseaseAssociation a owl:Class ; rdfs:label "gene has variant that contributes to disease association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], + [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:subject_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:subject_form_or_variant_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], biolink:GeneToDiseaseAssociation ; skos:inScheme . @@ -4655,68 +4709,68 @@ biolink:GeneHasVariantThatContributesToDiseaseAssociation a owl:Class ; biolink:GeneRegulatesGeneAssociation a owl:Class ; rdfs:label "gene regulates gene association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualified_predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:species_context_qualifier ], + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:species_context_qualifier ], + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:minCardinality 1 ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], biolink:Association ; skos:definition "Describes a regulatory relationship between two genes or gene products." ; skos:inScheme . @@ -4725,50 +4779,50 @@ biolink:GeneToExpressionSiteAssociation a owl:Class ; rdfs:label "gene to expression site association" ; rdfs:seeAlso ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:quantifier_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:quantifier_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:stage_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:LifeStage ; - owl:onProperty biolink:stage_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:quantifier_qualifier ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:quantifier_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:stage_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:LifeStage ; owl:onProperty biolink:stage_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:quantifier_qualifier ], biolink:Association ; skos:definition "An association between a gene and a gene expression site, possibly qualified by stage/timing info." ; skos:editorialNote "TBD: introduce subclasses for distinction between wild-type and experimental conditions?" ; @@ -4782,12 +4836,12 @@ biolink:GeneToGeneCoexpressionAssociation a owl:Class ; [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneExpressionMixin ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:GeneToGeneAssociation ; skos:definition "Indicates that two genes are co-expressed, generally under the same conditions." ; skos:inScheme . @@ -4795,17 +4849,20 @@ biolink:GeneToGeneCoexpressionAssociation a owl:Class ; biolink:GeneToGeneFamilyAssociation a owl:Class ; rdfs:label "gene to gene family association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneFamily ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:Gene ; owl:onProperty biolink:subject ], @@ -4817,9 +4874,6 @@ biolink:GeneToGeneFamilyAssociation a owl:Class ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneFamily ; owl:onProperty biolink:object ], biolink:Association ; skos:definition "Set membership of a gene in a family of genes related by common evolutionary ancestry usually inferred by sequence comparisons. The genes in a given family generally share common sequence motifs which generally map onto shared gene product structure-function relationships." ; @@ -4828,32 +4882,32 @@ biolink:GeneToGeneFamilyAssociation a owl:Class ; biolink:GeneToGeneHomologyAssociation a owl:Class ; rdfs:label "gene to gene homology association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], biolink:GeneToGeneAssociation ; skos:definition "A homology association between two genes. May be orthology (in which case the species of subject and object should differ) or paralogy (in which case the species may be the same)" ; skos:inScheme . @@ -4861,32 +4915,32 @@ biolink:GeneToGeneHomologyAssociation a owl:Class ; biolink:GeneToGeneProductRelationship a owl:Class ; rdfs:label "gene to gene product relationship" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneProductMixin ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:Gene ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:GeneProductMixin ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], biolink:SequenceFeatureRelationship ; skos:definition "A gene is transcribed and potentially translated to a gene product" ; skos:inScheme . @@ -4894,22 +4948,22 @@ biolink:GeneToGeneProductRelationship a owl:Class ; biolink:GeneToGoTermAssociation a owl:Class ; rdfs:label "gene to go term association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:Gene ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:OntologyClass ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], biolink:FunctionalAssociation ; skos:altLabel "functional association" ; @@ -4919,16 +4973,10 @@ biolink:GeneToGoTermAssociation a owl:Class ; biolink:GeneToPathwayAssociation a owl:Class ; rdfs:label "gene to pathway association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Pathway ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:Pathway ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; @@ -4936,6 +4984,12 @@ biolink:GeneToPathwayAssociation a owl:Class ; [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], @@ -4946,29 +5000,29 @@ biolink:GeneToPathwayAssociation a owl:Class ; biolink:GeneToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "gene to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:PhenotypicFeature ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; skos:exactMatch WBVocab:Gene-Phenotype-Association ; skos:inScheme . @@ -4977,13 +5031,13 @@ biolink:Genome a owl:Class ; rdfs:label "genome" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:PhysicalEssence ], biolink:BiologicalEntity ; skos:closeMatch dcid:GenomeAssemblyUnit ; skos:definition "A genome is the sum of genetic material within a cell or virion." ; @@ -4995,23 +5049,23 @@ biolink:Genome a owl:Class ; biolink:GenomicBackgroundExposure a owl:Class ; rdfs:label "genomic background exposure" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ExposureEvent ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneGroupingMixin ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ThingWithTaxon ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GenomicEntity ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass ], biolink:Attribute ; skos:definition "A genomic background exposure is where an individual's specific genomic background of genes, sequence variants or other pre-existing genomic conditions constitute a kind of 'exposure' to the organism, leading to or influencing an outcome." ; skos:inScheme . @@ -5019,46 +5073,46 @@ biolink:GenomicBackgroundExposure a owl:Class ; biolink:GenotypeAsAModelOfDiseaseAssociation a owl:Class ; rdfs:label "genotype as a model of disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + owl:allValuesFrom biolink:Genotype ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], biolink:GenotypeToDiseaseAssociation ; skos:inScheme . biolink:GenotypeToGeneAssociation a owl:Class ; rdfs:label "genotype to gene association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:Gene ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], @@ -5072,32 +5126,32 @@ biolink:GenotypeToGeneAssociation a owl:Class ; biolink:GenotypeToGenotypePartAssociation a owl:Class ; rdfs:label "genotype to genotype part association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:Genotype ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:Genotype ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "Any association between one genotype and a genotypic entity that is a sub-component of it" ; skos:inScheme . @@ -5105,11 +5159,20 @@ biolink:GenotypeToGenotypePartAssociation a owl:Class ; biolink:GenotypeToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "genotype to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], @@ -5119,15 +5182,6 @@ biolink:GenotypeToPhenotypicFeatureAssociation a owl:Class ; [ a owl:Restriction ; owl:allValuesFrom biolink:Genotype ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "Any association between one genotype and a phenotypic feature, where having the genotype confers the phenotype, either in isolation or through environment" ; skos:inScheme . @@ -5135,16 +5189,13 @@ biolink:GenotypeToPhenotypicFeatureAssociation a owl:Class ; biolink:GenotypeToVariantAssociation a owl:Class ; rdfs:label "genotype to variant association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:Genotype ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; @@ -5156,8 +5207,11 @@ biolink:GenotypeToVariantAssociation a owl:Class ; owl:allValuesFrom biolink:SequenceVariant ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], @@ -5199,13 +5253,13 @@ biolink:GeographicExposure a owl:Class ; biolink:GeographicLocationAtTime a owl:Class ; rdfs:label "geographic location at time" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:timepoint ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:timepoint ], [ a owl:Restriction ; - owl:allValuesFrom biolink:time_type ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:timepoint ], biolink:GeographicLocation ; skos:definition "a location that can be described in lat/long coordinates, for a particular time" ; @@ -5227,13 +5281,13 @@ biolink:Haplotype a owl:Class ; rdfs:label "haplotype" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:GenomicEntity ], biolink:BiologicalEntity ; skos:definition "A set of zero or more Alleles on a single instance of a Sequence[VMC]" ; skos:exactMatch , @@ -5264,11 +5318,8 @@ biolink:Human a owl:Class ; biolink:InformationContentEntityToNamedThingAssociation a owl:Class ; rdfs:label "information content entity to named thing association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], @@ -5276,19 +5327,22 @@ biolink:InformationContentEntityToNamedThingAssociation a owl:Class ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], biolink:Association ; skos:definition "association between a named thing and a information content entity where the specific context of the relationship between that named thing and the publication is unknown. For example, model organisms databases often capture the knowledge that a gene is found in a journal article, but not specifically the context in which that gene was documented in the article. In these cases, this association with the accompanying predicate 'mentions' could be used. Conversely, for more specific associations (like 'gene to disease association', the publication should be captured as an edge property)." ; @@ -5368,16 +5422,16 @@ biolink:MacromolecularComplex a owl:Class ; biolink:MacromolecularMachineToBiologicalProcessAssociation a owl:Class ; rdfs:label "macromolecular machine to biological process association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:BiologicalProcess ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:BiologicalProcess ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], biolink:FunctionalAssociation ; skos:definition "A functional association between a macromolecular machine (gene, gene product or complex) and a biological process or pathway (as represented in the GO biological process branch), where the entity carries out some part of the process, regulates it, or acts upstream of it." ; @@ -5386,9 +5440,6 @@ biolink:MacromolecularMachineToBiologicalProcessAssociation a owl:Class ; biolink:MacromolecularMachineToCellularComponentAssociation a owl:Class ; rdfs:label "macromolecular machine to cellular component association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:CellularComponent ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; @@ -5397,6 +5448,9 @@ biolink:MacromolecularMachineToCellularComponentAssociation a owl:Class ; [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:CellularComponent ; + owl:onProperty biolink:object ], biolink:FunctionalAssociation ; skos:definition "A functional association between a macromolecular machine (gene, gene product or complex) and a cellular component (as represented in the GO cellular component branch), where the entity carries out its function in the cellular component." ; skos:inScheme . @@ -5404,17 +5458,17 @@ biolink:MacromolecularMachineToCellularComponentAssociation a owl:Class ; biolink:MacromolecularMachineToMolecularActivityAssociation a owl:Class ; rdfs:label "macromolecular machine to molecular activity association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularActivity ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:MolecularActivity ; + owl:onProperty biolink:object ], biolink:FunctionalAssociation ; skos:definition "A functional association between a macromolecular machine (gene, gene product or complex) and a molecular activity (as represented in the GO molecular function branch), where the entity carries out the activity, or contributes to its execution." ; skos:inScheme . @@ -5423,31 +5477,31 @@ biolink:MaterialSampleDerivationAssociation a owl:Class ; rdfs:label "material sample derivation association" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:MaterialSample ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "An association between a material sample and the material entity from which it is derived." ; skos:inScheme . @@ -5513,12 +5567,12 @@ biolink:MolecularActivityToChemicalEntityAssociation a owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:MolecularActivity ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], @@ -5536,22 +5590,22 @@ biolink:MolecularActivityToMolecularActivityAssociation a owl:Class ; rdfs:label "molecular activity to molecular activity association" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:MolecularActivity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularActivity ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:MolecularActivity ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; skos:inScheme . @@ -5559,17 +5613,17 @@ biolink:MolecularActivityToMolecularActivityAssociation a owl:Class ; biolink:MolecularActivityToPathwayAssociation a owl:Class ; rdfs:label "molecular activity to pathway association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:MolecularActivity ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], @@ -5578,13 +5632,13 @@ biolink:MolecularActivityToPathwayAssociation a owl:Class ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], biolink:Association ; skos:definition "Association that holds the relationship between a reaction and the pathway it participates in." ; skos:inScheme . @@ -5595,34 +5649,19 @@ biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation a owl:Class ; owl:minCardinality 0 ; owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_context_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:object_context_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; + owl:maxCardinality 1 ; owl:onProperty biolink:population_context_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; @@ -5631,38 +5670,53 @@ biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:population_context_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:OntologyClass ; owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; owl:onProperty biolink:population_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:subject_context_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:object_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:subject_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:population_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:object_context_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], biolink:Association ; skos:inScheme . @@ -5676,14 +5730,14 @@ biolink:NucleicAcidSequenceMotif a owl:Class ; biolink:NucleosomeModification a owl:Class ; rdfs:label "nucleosome modification" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EpigenomicEntity ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneProductIsoformMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GenomicEntity ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EpigenomicEntity ], biolink:BiologicalEntity ; skos:definition "A chemical modification of a histone protein within a nucleosome octomer or a substitution of a histone with a variant histone isoform. e.g. Histone 4 Lysine 20 methylation (H4K20me), histone variant H2AZ substituting H2A." ; skos:inScheme . @@ -5697,18 +5751,6 @@ biolink:ObservedExpectedFrequencyAnalysisResult a owl:Class ; biolink:OrganismTaxonToEnvironmentAssociation a owl:Class ; rdfs:label "organism taxon to environment association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation ], - [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; @@ -5718,55 +5760,67 @@ biolink:OrganismTaxonToEnvironmentAssociation a owl:Class ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:Association ; skos:inScheme . biolink:OrganismTaxonToOrganismTaxonInteraction a owl:Class ; rdfs:label "organism taxon to organism taxon interaction" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:associated_environmental_context ], - [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:associated_environmental_context ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:associated_environmental_context ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:associated_environmental_context ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:associated_environmental_context ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:associated_environmental_context ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], biolink:OrganismTaxonToOrganismTaxonAssociation ; skos:definition "An interaction relationship between two taxa. This may be a symbiotic relationship (encompassing mutualism and parasitism), or it may be non-symbiotic. Example: plague transmitted_by flea; cattle domesticated_by Homo sapiens; plague infects Homo sapiens" ; skos:inScheme . @@ -5774,32 +5828,32 @@ biolink:OrganismTaxonToOrganismTaxonInteraction a owl:Class ; biolink:OrganismTaxonToOrganismTaxonSpecialization a owl:Class ; rdfs:label "organism taxon to organism taxon specialization" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:subject ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], biolink:OrganismTaxonToOrganismTaxonAssociation ; skos:definition "A child-parent relationship between two taxa. For example: Homo sapiens subclass_of Homo" ; skos:inScheme . @@ -5808,30 +5862,30 @@ biolink:OrganismToOrganismAssociation a owl:Class ; rdfs:label "organism to organism association" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:IndividualOrganism ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:IndividualOrganism ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:IndividualOrganism ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:IndividualOrganism ; + owl:onProperty biolink:subject ], biolink:Association ; skos:inScheme . biolink:OrganismalEntityAsAModelOfDiseaseAssociation a owl:Class ; rdfs:label "organismal entity as a model of disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + owl:allValuesFrom biolink:OrganismalEntity ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], @@ -5839,10 +5893,10 @@ biolink:OrganismalEntityAsAModelOfDiseaseAssociation a owl:Class ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismalEntity ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], biolink:Association ; skos:inScheme . @@ -5850,50 +5904,50 @@ biolink:OrganismalEntityAsAModelOfDiseaseAssociation a owl:Class ; biolink:PairwiseMolecularInteraction a owl:Class ; rdfs:label "pairwise molecular interaction" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:interacting_molecules_category ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:interacting_molecules_category ], + owl:minCardinality 1 ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:interacting_molecules_category ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:allValuesFrom biolink:MolecularEntity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:allValuesFrom biolink:MolecularEntity ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:id ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:OntologyClass ; owl:onProperty biolink:interacting_molecules_category ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:id ], + owl:minCardinality 0 ; + owl:onProperty biolink:interacting_molecules_category ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularEntity ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:PairwiseGeneToGeneInteraction ; skos:definition "An interaction at the molecular level between two physical entities" ; skos:inScheme . @@ -5985,17 +6039,17 @@ biolink:Phenomenon a owl:Class ; biolink:PhenotypicFeatureToDiseaseAssociation a owl:Class ; rdfs:label "phenotypic feature to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhenotypicFeatureToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], @@ -6058,29 +6112,29 @@ biolink:PopulationToPopulationAssociation a owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; owl:onProperty biolink:object ], biolink:Association ; skos:definition "An association between a two populations" ; @@ -6098,194 +6152,194 @@ biolink:PosttranslationalModification a owl:Class ; biolink:PredicateMapping a owl:Class ; rdfs:label "predicate mapping" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_part_qualifier ], - [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:narrow_match ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:exact_match ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:mapped_predicate ], + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; + owl:onProperty biolink:anatomical_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:exact_match ], + owl:onProperty biolink:object_derivative_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:broad_match ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; + owl:onProperty biolink:causal_mechanism_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:causal_mechanism_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:broad_match ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_context_qualifier ], + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:narrow_match ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:narrow_match ], + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:species_context_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:mapped_predicate ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:species_context_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_context_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:subject_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:exact_match ], + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:object_direction_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_derivative_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:exact_match ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:narrow_match ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:narrow_match ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_context_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:species_context_qualifier ], + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:exact_match ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:broad_match ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_part_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:mapped_predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:broad_match ], + owl:onProperty biolink:object_part_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:broad_match ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:mapped_predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:mapped_predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:mapped_predicate ], + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:broad_match ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_derivative_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_aspect_qualifier ], linkml:ClassDefinition ; skos:definition "A deprecated predicate mapping object contains the deprecated predicate and an example of the rewiring that should be done to use a qualified statement in its place." ; skos:inScheme . @@ -6308,25 +6362,25 @@ biolink:ProcessRegulatesProcessAssociation a owl:Class ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], biolink:Association ; skos:definition "Describes a regulatory relationship between two genes or gene products." ; skos:inScheme . @@ -6342,10 +6396,10 @@ biolink:ProteinDomain a owl:Class ; rdfs:label "protein domain" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:GeneGroupingMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneGroupingMixin ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], biolink:BiologicalEntity ; skos:definition "A conserved part of protein sequence and (tertiary) structure that can evolve, function, and exist independently of the rest of the protein chain. Protein domains maintain their structure and function independently of the proteins in which they are found. e.g. an SH3 domain." ; skos:exactMatch , @@ -6357,10 +6411,10 @@ biolink:ProteinFamily a owl:Class ; rdfs:label "protein family" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:GeneGroupingMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneGroupingMixin ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], biolink:BiologicalEntity ; skos:exactMatch , WIKIDATA:Q2278983 ; @@ -6424,10 +6478,10 @@ biolink:ReactionToCatalystAssociation a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], biolink:ReactionToParticipantAssociation ; skos:inScheme . @@ -6439,10 +6493,10 @@ biolink:ReagentTargetedGene a owl:Class ; owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:OntologyClass ], biolink:BiologicalEntity ; skos:altLabel "sequence targeting reagent" ; skos:definition "A gene altered in its expression level in the context of some experiment as a result of being targeted by gene-knockdown reagent(s) such as a morpholino or RNAi." ; @@ -6470,6 +6524,36 @@ biolink:RelativeFrequencyAnalysisResult a owl:Class ; rdfs:subClassOf biolink:ResourceRoleEnum, linkml:PermissibleValue . + a owl:Class ; + rdfs:label "negative" ; + rdfs:subClassOf biolink:ResponseEnum, + linkml:PermissibleValue . + + a owl:Class ; + rdfs:label "therapeutic_response" ; + rdfs:subClassOf biolink:ResponseEnum, + linkml:PermissibleValue . + + a owl:Class ; + rdfs:label "cell line" ; + rdfs:subClassOf biolink:ResponseTargetEnum, + linkml:PermissibleValue . + + a owl:Class ; + rdfs:label "cohort" ; + rdfs:subClassOf biolink:ResponseTargetEnum, + linkml:PermissibleValue . + + a owl:Class ; + rdfs:label "individual" ; + rdfs:subClassOf biolink:ResponseTargetEnum, + linkml:PermissibleValue . + + a owl:Class ; + rdfs:label "sample" ; + rdfs:subClassOf biolink:ResponseTargetEnum, + linkml:PermissibleValue . + biolink:SequenceEnum a owl:Class ; rdfs:subClassOf linkml:EnumDefinition ; owl:unionOf ( ) ; @@ -6492,20 +6576,20 @@ biolink:SequenceVariantModulatesTreatmentAssociation a owl:Class ; owl:allValuesFrom biolink:SequenceVariant ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:Treatment ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Treatment ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "An association between a sequence variant and a treatment or health intervention. The treatment object itself encompasses both the disease and the drug used." ; skos:inScheme ; @@ -6514,47 +6598,47 @@ biolink:SequenceVariantModulatesTreatmentAssociation a owl:Class ; biolink:Serial a owl:Class ; rdfs:label "serial" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:iso_abbreviation ], + owl:maxCardinality 1 ; + owl:onProperty biolink:issue ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:type ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:issue ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:volume ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:iso_abbreviation ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:issue ], + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:type ], + owl:onProperty biolink:volume ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:issue ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:iso_abbreviation ], + owl:maxCardinality 1 ; + owl:onProperty biolink:volume ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:iso_abbreviation ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:volume ], + owl:onProperty biolink:issue ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:volume ], + owl:minCardinality 0 ; + owl:onProperty biolink:iso_abbreviation ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:id ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:type ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:iso_abbreviation ], biolink:Publication ; skos:altLabel "journal" ; skos:definition "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; @@ -6603,11 +6687,11 @@ biolink:Snv a owl:Class ; biolink:SocioeconomicExposure a owl:Class ; rdfs:label "socioeconomic exposure" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:has_attribute ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ExposureEvent ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:has_attribute ], [ a owl:Restriction ; owl:allValuesFrom biolink:SocioeconomicAttribute ; owl:onProperty biolink:has_attribute ], @@ -6662,23 +6746,23 @@ biolink:StudyVariable a owl:Class ; biolink:TaxonToTaxonAssociation a owl:Class ; rdfs:label "taxon to taxon association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:subject ], biolink:Association ; skos:inScheme . @@ -6698,23 +6782,23 @@ biolink:TextMiningResult a owl:Class ; biolink:TranscriptToGeneRelationship a owl:Class ; rdfs:label "transcript to gene relationship" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Transcript ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:Gene ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Transcript ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; - owl:onProperty biolink:object ], biolink:SequenceFeatureRelationship ; skos:definition "A gene is a collection of transcripts" ; skos:inScheme . @@ -6722,9 +6806,6 @@ biolink:TranscriptToGeneRelationship a owl:Class ; biolink:TranscriptionFactorBindingSite a owl:Class ; rdfs:label "transcription factor binding site" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; @@ -6733,6 +6814,9 @@ biolink:TranscriptionFactorBindingSite a owl:Class ; [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass ], biolink:RegulatoryRegion ; skos:altLabel "binding site", "tf binding site" ; @@ -6743,36 +6827,36 @@ biolink:TranscriptionFactorBindingSite a owl:Class ; biolink:VariantAsAModelOfDiseaseAssociation a owl:Class ; rdfs:label "variant as a model of disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:SequenceVariant ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], biolink:VariantToDiseaseAssociation ; skos:inScheme . biolink:VariantToGeneExpressionAssociation a owl:Class ; rdfs:label "variant to gene expression association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneExpressionMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneExpressionMixin ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], biolink:VariantToGeneAssociation ; skos:definition "An association between a variant and expression of a gene (i.e. e-QTL)" ; @@ -6781,54 +6865,42 @@ biolink:VariantToGeneExpressionAssociation a owl:Class ; biolink:VariantToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "variant to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:SequenceVariant ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], biolink:Association ; skos:inScheme . biolink:VariantToPopulationAssociation a owl:Class ; rdfs:label "variant to population association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_quotient ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_total ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:has_total ], [ a owl:Restriction ; - owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:has_count ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FrequencyQuantifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_total ], + owl:maxCardinality 1 ; + owl:onProperty biolink:has_count ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:has_quotient ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:has_count ], [ a owl:Restriction ; owl:maxCardinality 1 ; @@ -6836,24 +6908,36 @@ biolink:VariantToPopulationAssociation a owl:Class ; [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:has_quotient ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:FrequencyQuantifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:SequenceVariant ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:has_quotient ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_count ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:FrequencyQualifierMixin ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_quotient ], biolink:Association ; skos:definition "An association between a variant and a population, where the variant has particular frequency in the population" ; skos:inScheme . @@ -6966,12 +7050,6 @@ biolink:catalyst_qualifier a owl:ObjectProperty ; skos:definition "a qualifier that connects an association between two causally connected entities (for example, two chemical entities, or a chemical entity in that changes location) and the gene product, gene, or complex that enables or catalyzes the change." ; skos:inScheme . -biolink:context_qualifier a owl:DatatypeProperty ; - rdfs:label "context qualifier" ; - rdfs:subPropertyOf biolink:qualifier ; - skos:definition "Restricts the setting/context/location where the core concept (or qualified core concept) resides or occurs." ; - skos:inScheme . - biolink:contributes_to a owl:DatatypeProperty ; rdfs:label "contributes to" ; rdfs:subPropertyOf biolink:related_to_at_instance_level ; @@ -7215,9 +7293,6 @@ biolink:mesh_terms a owl:DatatypeProperty ; skos:exactMatch dcid:MeSHTerm ; skos:inScheme . -biolink:narrative_text a rdfs:Datatype ; - owl:equivalentClass xsd:string . - biolink:object_category_closure a owl:ObjectProperty ; rdfs:label "object category closure" ; rdfs:domain biolink:Association ; @@ -7427,17 +7502,26 @@ biolink:AdministrativeEntity a owl:Class ; biolink:Article a owl:Class ; rdfs:label "article" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:volume ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:iso_abbreviation ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:issue ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:iso_abbreviation ], + owl:onProperty biolink:published_in ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; + owl:onProperty biolink:published_in ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:volume ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:issue ], [ a owl:Restriction ; owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:published_in ], @@ -7445,23 +7529,14 @@ biolink:Article a owl:Class ; owl:minCardinality 0 ; owl:onProperty biolink:iso_abbreviation ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:published_in ], + owl:maxCardinality 1 ; + owl:onProperty biolink:iso_abbreviation ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:issue ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:issue ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:volume ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:published_in ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:iso_abbreviation ], biolink:Publication ; skos:definition "a piece of writing on a particular topic presented as a stand-alone section of a larger publication" ; skos:exactMatch fabio:article, @@ -7472,10 +7547,10 @@ biolink:Behavior a owl:Class ; rdfs:label "behavior" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ActivityAndBehavior ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:ActivityAndBehavior ], biolink:BiologicalProcess ; skos:exactMatch STY:T053, ; @@ -7497,29 +7572,29 @@ biolink:BookChapter a owl:Class ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:volume ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:volume ], + owl:maxCardinality 1 ; + owl:onProperty biolink:chapter ], [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; + owl:maxCardinality 1 ; owl:onProperty biolink:published_in ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:published_in ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:chapter ], + owl:maxCardinality 1 ; + owl:onProperty biolink:volume ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:chapter ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:published_in ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:chapter ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:volume ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:published_in ], biolink:Publication ; skos:inScheme . @@ -7537,19 +7612,19 @@ biolink:Case a owl:Class ; biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "cell line to disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:CellLineToEntityAssociationMixin ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], biolink:Association ; skos:definition "An relationship between a cell line and a disease or a phenotype, where the cell line is derived from an individual with that disease or phenotype." ; @@ -7570,14 +7645,14 @@ biolink:ChemicalEntityToEntityAssociationMixin a owl:Class ; biolink:ChemicalExposure a owl:Class ; rdfs:label "chemical exposure" ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:QuantityValue ; + owl:onProperty biolink:has_quantitative_value ], + [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_quantitative_value ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ExposureEvent ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:QuantityValue ; - owl:onProperty biolink:has_quantitative_value ], biolink:Attribute ; skos:definition "A chemical exposure is an intake of a particular chemical entity." ; skos:exactMatch ECTO:9000000, @@ -7587,29 +7662,29 @@ biolink:ChemicalExposure a owl:Class ; biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "chemical or drug or treatment to disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:FDA_adverse_event_level ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:FDAIDAAdverseEventEnum ; + owl:minCardinality 0 ; owl:onProperty biolink:FDA_adverse_event_level ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:FDAIDAAdverseEventEnum ; owl:onProperty biolink:FDA_adverse_event_level ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:FDA_adverse_event_level ], biolink:Association ; skos:definition "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary undesirable effect." ; skos:inScheme . @@ -7753,77 +7828,77 @@ biolink:GeneFamily a owl:Class ; biolink:GenomicSequenceLocalization a owl:Class ; rdfs:label "genomic sequence localization" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:start_interbase_coordinate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:StrandEnum ; - owl:onProperty biolink:strand ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:StrandEnum ; owl:onProperty biolink:genome_build ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:phase ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:start_interbase_coordinate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:strand ], + owl:minCardinality 0 ; + owl:onProperty biolink:phase ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:StrandEnum ; + owl:onProperty biolink:strand ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:genome_build ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:start_interbase_coordinate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:StrandEnum ; + owl:onProperty biolink:genome_build ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:end_interbase_coordinate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:start_interbase_coordinate ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:strand ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:genome_build ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:end_interbase_coordinate ], + owl:allValuesFrom biolink:NucleicAcidEntity ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:PhaseEnum ; owl:onProperty biolink:phase ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:end_interbase_coordinate ], [ a owl:Restriction ; owl:allValuesFrom biolink:NucleicAcidEntity ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:end_interbase_coordinate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:genome_build ], [ a owl:Restriction ; - owl:allValuesFrom biolink:PhaseEnum ; - owl:onProperty biolink:phase ], + owl:maxCardinality 1 ; + owl:onProperty biolink:strand ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:phase ], + owl:onProperty biolink:end_interbase_coordinate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NucleicAcidEntity ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:start_interbase_coordinate ], biolink:SequenceAssociation ; skos:broadMatch dcid:Chromosome ; skos:definition "A relationship between a sequence feature and a nucleic acid entity it is localized to. The reference entity may be a chromosome, chromosome region or information entity such as a contig." ; @@ -7833,7 +7908,7 @@ biolink:GenomicSequenceLocalization a owl:Class ; biolink:GenotypeToDiseaseAssociation a owl:Class ; rdfs:label "genotype to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; @@ -7841,30 +7916,30 @@ biolink:GenotypeToDiseaseAssociation a owl:Class ; [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], biolink:Association ; skos:inScheme ; skos:note "TODO decide no how to model pathogenicity" . @@ -7877,23 +7952,23 @@ biolink:GenotypeToEntityAssociationMixin a owl:Class ; biolink:GeographicLocation a owl:Class ; rdfs:label "geographic location" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:latitude ], - [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:longitude ], [ a owl:Restriction ; - owl:allValuesFrom xsd:float ; + owl:minCardinality 0 ; owl:onProperty biolink:latitude ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:longitude ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:float ; + owl:onProperty biolink:longitude ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:latitude ], [ a owl:Restriction ; owl:allValuesFrom xsd:float ; - owl:onProperty biolink:longitude ], + owl:onProperty biolink:latitude ], biolink:PlanetaryEntity ; skos:definition "a location that can be described in lat/long coordinates" ; skos:exactMatch STY:T083, @@ -7935,13 +8010,13 @@ biolink:OrganismTaxonToEntityAssociation a owl:Class ; biolink:PairwiseGeneToGeneInteraction a owl:Class ; rdfs:label "pairwise gene to gene interaction" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], biolink:GeneToGeneAssociation ; skos:definition "An interaction between two genes or two gene products. May be physical (e.g. protein binding) or genetic (between genes). May be symmetric (e.g. protein interaction) or directed (e.g. phosphorylation)" ; @@ -7975,41 +8050,41 @@ biolink:Polypeptide a owl:Class ; biolink:ReactionToParticipantAssociation a owl:Class ; rdfs:label "reaction to participant association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularEntity ; - owl:onProperty biolink:subject ], + owl:allValuesFrom xsd:integer ; + owl:onProperty biolink:stoichiometry ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:reaction_side ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:ReactionDirectionEnum ; owl:onProperty biolink:reaction_direction ], [ a owl:Restriction ; - owl:allValuesFrom xsd:integer ; + owl:maxCardinality 1 ; owl:onProperty biolink:stoichiometry ], [ a owl:Restriction ; owl:allValuesFrom biolink:ReactionSideEnum ; owl:onProperty biolink:reaction_side ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:minCardinality 0 ; + owl:onProperty biolink:reaction_side ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:MolecularEntity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ReactionDirectionEnum ; + owl:maxCardinality 1 ; owl:onProperty biolink:reaction_direction ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:stoichiometry ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:reaction_side ], + owl:onProperty biolink:reaction_direction ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:stoichiometry ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:reaction_side ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:reaction_direction ], + owl:minCardinality 0 ; + owl:onProperty biolink:stoichiometry ], biolink:ChemicalToChemicalAssociation ; skos:inScheme . @@ -8041,6 +8116,18 @@ biolink:StudyPopulation a owl:Class ; biolink:Treatment a owl:Class ; rdfs:label "treatment" ; rdfs:subClassOf [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_device ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_procedure ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Drug ; + owl:onProperty biolink:has_drug ], + [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_drug ], [ a owl:Restriction ; @@ -8049,21 +8136,9 @@ biolink:Treatment a owl:Class ; [ a owl:Restriction ; owl:allValuesFrom biolink:Procedure ; owl:onProperty biolink:has_procedure ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_procedure ], [ a owl:Restriction ; owl:allValuesFrom biolink:Device ; owl:onProperty biolink:has_device ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_device ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Drug ; - owl:onProperty biolink:has_drug ], biolink:NamedThing ; skos:altLabel "medical action", "medical intervention" ; @@ -8076,38 +8151,38 @@ biolink:Treatment a owl:Class ; biolink:VariantToDiseaseAssociation a owl:Class ; rdfs:label "variant to disease association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], biolink:Association ; skos:inScheme ; skos:note "TODO decide no how to model pathogenicity" . @@ -8117,24 +8192,24 @@ biolink:VariantToGeneAssociation a owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Gene ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; - owl:onProperty biolink:object ], biolink:Association ; skos:definition "An association between a variant and a gene, where the variant has a genetic association with the gene (i.e. is in linkage disequilibrium)" ; skos:inScheme . @@ -8185,8 +8260,14 @@ biolink:associated_with_likelihood_of a owl:DatatypeProperty ; skos:inScheme ; biolink:canonical_predicate true . -biolink:biological_sequence a rdfs:Datatype ; - owl:equivalentClass xsd:string . +biolink:associated_with_response_to a owl:DatatypeProperty ; + rdfs:label "associated with response to" ; + rdfs:subPropertyOf biolink:associated_with ; + skos:definition "A statistical association used to indicate that the object of a statement using this predicate induces a response of some kind in the subject entity. Intentionally broad in definition, this predicate should be used with qualifiers to narrow the type of response (E.g. whether the response is therapeutic, phenotypic, detrimental, resistant, etc. is captured in context, direction, and aspect qualifiers)." ; + skos:inScheme ; + skos:note """subject: NCBIGene:2064 # HER2 subject_aspect: Amplification predicate: associated with response to object: CHEBI:10035 # Trastuzumab response_type_qualifier: therapeutic_sensitivity response_direction_qualifer: increased response_target_qualifier: human patient disease_context_qualifier: MONDO:0007254 # breast cancer +subject: MONDO:0007254 predicate: associated with response to qualified_predicate: associated with object: CHEBI:10035 # Trastuzumab response_context_qualifier: therapeutic_sensitivity""" ; + biolink:canonical_predicate true . biolink:chapter a owl:DatatypeProperty ; rdfs:label "chapter" ; @@ -8215,7 +8296,7 @@ biolink:deprecated a owl:DatatypeProperty ; biolink:description a owl:DatatypeProperty ; rdfs:label "description" ; - rdfs:range biolink:narrative_text ; + rdfs:range xsd:string ; skos:altLabel "definition" ; skos:definition "a human-readable description of an entity" ; skos:exactMatch IAO:0000115, @@ -8292,7 +8373,7 @@ biolink:frequency_qualifier a owl:DatatypeProperty ; biolink:full_name a owl:DatatypeProperty ; rdfs:label "full name" ; rdfs:domain biolink:NamedThing ; - rdfs:range biolink:label_type ; + rdfs:range xsd:string ; rdfs:subPropertyOf biolink:node_property ; skos:definition "a long-form human readable name for a thing" ; skos:inScheme . @@ -8409,7 +8490,7 @@ biolink:homologous_to a owl:DatatypeProperty, biolink:in_taxon_label a owl:DatatypeProperty ; rdfs:label "in taxon label" ; rdfs:domain biolink:ThingWithTaxon ; - rdfs:range biolink:label_type ; + rdfs:range xsd:string ; rdfs:subPropertyOf biolink:node_property ; skos:definition "The human readable scientific name for the taxon of the entity." ; skos:exactMatch WIKIDATA_PROPERTY:P225 ; @@ -8441,9 +8522,6 @@ biolink:interacts_with a owl:ObjectProperty, skos:exactMatch SEMMEDDB:INTERACTS_WITH ; skos:inScheme . -biolink:iri_type a rdfs:Datatype ; - owl:equivalentClass xsd:anyURI . - biolink:is_metabolite a owl:DatatypeProperty ; rdfs:label "is metabolite" ; rdfs:domain biolink:MolecularEntity ; @@ -8649,6 +8727,20 @@ biolink:response_affected_by a owl:ObjectProperty ; skos:definition "holds between two chemical entities where the susceptibility of a biological entity or system (e.g. an organism, cell, cellular component, macromolecular machine mixin, biological or pathological process) of one is affected by the action of the other." ; skos:inScheme . +biolink:response_context_qualifier a owl:ObjectProperty ; + rdfs:label "response context qualifier" ; + rdfs:range biolink:ResponseEnum ; + rdfs:subPropertyOf biolink:context_qualifier ; + skos:definition "a biological response (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; + skos:inScheme . + +biolink:response_target_context_qualifier a owl:ObjectProperty ; + rdfs:label "response target context qualifier" ; + rdfs:range biolink:ResponseTargetEnum ; + rdfs:subPropertyOf biolink:context_qualifier ; + skos:definition "a biological response target (a patient, a cohort, a model system, a cell line, a sample of biological material, etc.)" ; + skos:inScheme . + biolink:rights a owl:DatatypeProperty ; rdfs:label "rights" ; rdfs:domain biolink:InformationContentEntity ; @@ -8806,20 +8898,20 @@ biolink:ActivityAndBehavior a owl:Class ; biolink:AnatomicalEntityToAnatomicalEntityAssociation a owl:Class ; rdfs:label "anatomical entity to anatomical entity association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], @@ -8854,35 +8946,35 @@ biolink:ChemicalRole a owl:Class ; biolink:ChemicalToChemicalAssociation a owl:Class ; rdfs:label "chemical to chemical association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], biolink:Association ; skos:definition "A relationship between two chemical entities. This can encompass actual interactions as well as temporal causal edges, e.g. one chemical converted to another." ; skos:inScheme . @@ -8959,56 +9051,56 @@ biolink:FrequencyQualifierMixin a owl:Class ; biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "gene to disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; + owl:onProperty biolink:subject_aspect_qualifier ], biolink:Association ; skos:inScheme ; skos:narrowMatch WBVocab:Gene-Phenotype-Association, @@ -9067,17 +9159,17 @@ biolink:OrganismTaxonToOrganismTaxonAssociation a owl:Class ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:subject ], @@ -9131,7 +9223,7 @@ biolink:RegulatoryRegion a owl:Class ; rdfs:label "regulatory region" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], @@ -9140,7 +9232,7 @@ biolink:RegulatoryRegion a owl:Class ; owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:GenomicEntity ], biolink:BiologicalEntity ; skos:altLabel "regulatory element" ; skos:definition "A region (or regions) of the genome that contains known or putative regulatory elements that act in cis- or trans- to affect the transcription of gene" ; @@ -9154,6 +9246,12 @@ biolink:RelationshipQuantifier a owl:Class ; rdfs:subClassOf ; skos:inScheme . +biolink:ResponseEnum a owl:Class ; + rdfs:subClassOf linkml:EnumDefinition ; + owl:unionOf ( ) ; + linkml:permissible_values , + . + biolink:Zygosity a owl:Class ; rdfs:label "zygosity" ; rdfs:subClassOf biolink:Attribute ; @@ -9366,6 +9464,12 @@ biolink:coexists_with a owl:DatatypeProperty, UBERON_CORE:transitively_proximally_connected_to ; biolink:canonical_predicate true . +biolink:context_qualifier a owl:DatatypeProperty ; + rdfs:label "context qualifier" ; + rdfs:subPropertyOf biolink:qualifier ; + skos:definition "Restricts the setting/context/location where the core concept (or qualified core concept) resides or occurs." ; + skos:inScheme . + biolink:exact_match a owl:DatatypeProperty, owl:SymmetricProperty ; rdfs:label "exact match" ; @@ -9447,7 +9551,7 @@ biolink:statement_qualifier a owl:DatatypeProperty ; biolink:temporal_context_qualifier a owl:DatatypeProperty ; rdfs:label "temporal context qualifier" ; - rdfs:range biolink:time_type ; + rdfs:range xsd:string ; rdfs:subPropertyOf biolink:qualifier ; skos:definition "a constraint of time placed upon the truth value of an association. for time intervales, use temporal interval qualifier." ; skos:inScheme . @@ -9473,13 +9577,13 @@ biolink:CellularComponent a owl:Class ; biolink:DatasetDistribution a owl:Class ; rdfs:label "dataset distribution" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:distribution_download_url ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:distribution_download_url ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:distribution_download_url ], biolink:InformationContentEntity ; skos:definition "an item that holds distribution level information about a dataset." ; @@ -9489,23 +9593,23 @@ biolink:DatasetDistribution a owl:Class ; biolink:DatasetSummary a owl:Class ; rdfs:label "dataset summary" ; rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:source_web_page ], + [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:source_logo ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:source_web_page ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:source_logo ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:source_logo ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:source_web_page ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:source_web_page ], + owl:onProperty biolink:source_logo ], biolink:InformationContentEntity ; skos:definition "an item that holds summary level information about a dataset." ; skos:inScheme . @@ -9532,23 +9636,23 @@ biolink:GeneProductIsoformMixin a owl:Class ; biolink:GeneToGeneAssociation a owl:Class ; rdfs:label "gene to gene association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], biolink:Association ; skos:altLabel "molecular or genetic interaction" ; skos:definition "abstract parent class for different kinds of gene-gene or gene product to gene product relationships. Includes homology and interaction." ; @@ -9631,22 +9735,22 @@ biolink:QuantityValue a owl:Class ; rdfs:label "quantity value" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_numeric_value ], + owl:onProperty biolink:has_unit ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:double ; owl:onProperty biolink:has_numeric_value ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:has_unit ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom ; owl:onProperty biolink:has_unit ], [ a owl:Restriction ; - owl:allValuesFrom xsd:double ; + owl:minCardinality 0 ; owl:onProperty biolink:has_numeric_value ], [ a owl:Restriction ; - owl:allValuesFrom ; - owl:onProperty biolink:has_unit ], + owl:maxCardinality 1 ; + owl:onProperty biolink:has_numeric_value ], biolink:Annotation ; skos:definition "A value of an attribute that is quantitative and measurable, expressed as a combination of a unit and a numeric value" ; skos:inScheme . @@ -9662,9 +9766,9 @@ biolink:SequenceFeatureRelationship a owl:Class ; rdfs:label "sequence feature relationship" ; rdfs:subClassOf [ a owl:Restriction ; owl:allValuesFrom biolink:NucleicAcidEntity ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; @@ -9674,9 +9778,9 @@ biolink:SequenceFeatureRelationship a owl:Class ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:NucleicAcidEntity ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], biolink:Association ; skos:definition "For example, a particular exon is part of a particular transcript or gene" ; @@ -9796,11 +9900,20 @@ biolink:ClinicalAttribute a owl:Class ; biolink:DatasetVersion a owl:Class ; rdfs:label "dataset version" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:ingest_date ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:has_distribution ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:ingest_date ], [ a owl:Restriction ; owl:allValuesFrom biolink:DatasetDistribution ; owl:onProperty biolink:has_distribution ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Dataset ; + owl:onProperty biolink:has_dataset ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_dataset ], @@ -9808,20 +9921,11 @@ biolink:DatasetVersion a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:has_dataset ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:has_distribution ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:ingest_date ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:ingest_date ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:ingest_date ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Dataset ; - owl:onProperty biolink:has_dataset ], biolink:InformationContentEntity ; skos:definition "an item that holds version level information about a dataset." ; skos:inScheme . @@ -9850,10 +9954,13 @@ biolink:FDAIDAAdverseEventEnum a owl:Class ; biolink:FunctionalAssociation a owl:Class ; rdfs:label "functional association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:MacromolecularMachineMixin ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OntologyClass ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MacromolecularMachineMixin ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; @@ -9861,12 +9968,9 @@ biolink:FunctionalAssociation a owl:Class ; [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], biolink:Association ; skos:definition "An association between a macromolecular machine mixin (gene, gene product or complex of gene products) and either a molecular activity, a biological process or a cellular location in which a function is executed." ; skos:inScheme . @@ -9907,6 +10011,14 @@ biolink:ReactionDirectionEnum a owl:Class ; , . +biolink:ResponseTargetEnum a owl:Class ; + rdfs:subClassOf linkml:EnumDefinition ; + owl:unionOf ( ) ; + linkml:permissible_values , + , + , + . + biolink:clinical_approval_status a owl:ObjectProperty ; rdfs:label "clinical approval status" ; rdfs:range biolink:ClinicalApprovalStatusEnum ; @@ -9999,7 +10111,7 @@ biolink:has_total a owl:DatatypeProperty ; biolink:iri a owl:DatatypeProperty ; rdfs:label "iri" ; - rdfs:range biolink:iri_type ; + rdfs:range xsd:string ; skos:definition "An IRI for an entity. This is determined by the id using expansion rules." ; skos:exactMatch WIKIDATA_PROPERTY:P854 ; skos:inScheme . @@ -10221,9 +10333,6 @@ biolink:supporting_study_metadata a owl:DatatypeProperty ; skos:definition "Information about a study used to generate information used as evidence to support the knowledge expressed in an Association. In practice, data creators should use one of the more specific subtypes of this property." ; skos:inScheme . -biolink:time_type a rdfs:Datatype ; - owl:equivalentClass xsd:time . - biolink:BiologicalSex a owl:Class ; rdfs:label "biological sex" ; rdfs:subClassOf biolink:Attribute ; @@ -10249,12 +10358,6 @@ biolink:ChemicalMixture a owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:highest_FDA_approval_status ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:is_supplement ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:is_supplement ], [ a owl:Restriction ; owl:allValuesFrom biolink:ApprovalStatusEnum ; owl:onProperty biolink:drug_regulatory_status_world_wide ], @@ -10262,8 +10365,8 @@ biolink:ChemicalMixture a owl:Class ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:is_supplement ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:routes_of_delivery ], + owl:maxCardinality 1 ; + owl:onProperty biolink:highest_FDA_approval_status ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:drug_regulatory_status_world_wide ], @@ -10272,13 +10375,19 @@ biolink:ChemicalMixture a owl:Class ; owl:onProperty biolink:drug_regulatory_status_world_wide ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:highest_FDA_approval_status ], + owl:onProperty biolink:is_supplement ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:is_supplement ], [ a owl:Restriction ; owl:allValuesFrom biolink:DrugDeliveryEnum ; owl:onProperty biolink:routes_of_delivery ], [ a owl:Restriction ; owl:allValuesFrom biolink:ApprovalStatusEnum ; owl:onProperty biolink:highest_FDA_approval_status ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:routes_of_delivery ], biolink:ChemicalEntity ; skos:closeMatch dcid:ChemicalCompound ; skos:definition "A chemical mixture is a chemical entity composed of two or more molecular entities." ; @@ -10304,28 +10413,28 @@ biolink:GeneProductMixin a owl:Class ; biolink:GeneToDiseaseAssociation a owl:Class ; rdfs:label "gene to disease association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; skos:closeMatch dcid:DiseaseGeneAssociation ; @@ -10342,38 +10451,38 @@ biolink:MacromolecularMachineMixin a owl:Class ; biolink:MolecularActivity a owl:Class ; rdfs:label "molecular activity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularEntity ; - owl:onProperty biolink:has_input ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:Occurrent ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:enabled_by ], + owl:onProperty biolink:has_output ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:MolecularEntity ; + owl:onProperty biolink:has_input ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_output ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:MacromolecularMachineMixin ; - owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:Occurrent ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularEntity ; - owl:onProperty biolink:has_output ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_input ], + owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_output ], + owl:onProperty biolink:has_input ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_input ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:allValuesFrom biolink:MacromolecularMachineMixin ; + owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:enabled_by ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:MolecularEntity ; + owl:onProperty biolink:has_output ], biolink:BiologicalProcessOrActivity ; skos:altLabel "molecular event", "molecular function", @@ -10394,41 +10503,41 @@ biolink:RetrievalSource a owl:Class ; rdfs:label "retrieval source" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:resource_id ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:resource_role ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:xref ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ResourceRoleEnum ; - owl:onProperty biolink:resource_role ], + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:upstream_resource_ids ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:upstream_resource_ids ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:upstream_resource_ids ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:resource_role ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:resource_id ], [ a owl:Restriction ; owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:xref ], + owl:onProperty biolink:resource_id ], [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; + owl:allValuesFrom biolink:ResourceRoleEnum ; + owl:onProperty biolink:resource_role ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:resource_id ], [ a owl:Restriction ; owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:upstream_resource_ids ], - biolink:InformationContentEntity ; - skos:definition "Provides information about how a particular InformationResource served as a source from which knowledge expressed in an Edge, or data used to generate this knowledge, was retrieved." ; - skos:inScheme . - + owl:onProperty biolink:xref ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:resource_role ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:xref ], + biolink:InformationContentEntity ; + skos:definition "Provides information about how a particular InformationResource served as a source from which knowledge expressed in an Edge, or data used to generate this knowledge, was retrieved." ; + skos:inScheme . + biolink:ThingWithTaxon a owl:Class ; rdfs:label "thing with taxon" ; rdfs:subClassOf ; @@ -10741,7 +10850,7 @@ biolink:related_to_at_concept_level a owl:DatatypeProperty, biolink:synonym a owl:DatatypeProperty ; rdfs:label "synonym" ; rdfs:domain biolink:NamedThing ; - rdfs:range biolink:label_type ; + rdfs:range xsd:string ; rdfs:subPropertyOf biolink:node_property ; skos:altLabel "alias" ; skos:definition "Alternate human-readable names for a thing" ; @@ -10786,23 +10895,23 @@ biolink:Drug a owl:Class ; biolink:Genotype a owl:Class ; rdfs:label "genotype" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Zygosity ; + owl:minCardinality 0 ; owl:onProperty biolink:has_zygosity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_zygosity ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:Zygosity ; owl:onProperty biolink:has_zygosity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:GenomicEntity ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PhysicalEssence ], biolink:BiologicalEntity ; skos:definition "An information content entity that describes a genome by specifying the total variation in genomic sequence and/or gene expression, relative to some established background" ; skos:exactMatch , @@ -10854,14 +10963,14 @@ biolink:causal_mechanism_qualifier a owl:ObjectProperty ; biolink:has_biological_sequence a owl:DatatypeProperty ; rdfs:label "has biological sequence" ; - rdfs:range biolink:biological_sequence ; + rdfs:range xsd:string ; rdfs:subPropertyOf biolink:node_property ; skos:definition "connects a genomic feature to its sequence" ; skos:inScheme . biolink:timepoint a owl:DatatypeProperty ; rdfs:label "timepoint" ; - rdfs:range biolink:time_type ; + rdfs:range xsd:string ; skos:altLabel "duration" ; skos:definition "a point in time" ; skos:inScheme . @@ -10896,65 +11005,65 @@ biolink:AgentTypeEnum a owl:Class ; biolink:Entity a owl:Class ; rdfs:label "entity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Attribute ; - owl:onProperty biolink:has_attribute ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_attribute ], + owl:maxCardinality 1 ; + owl:onProperty biolink:iri ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:type ], + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:type ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:iri ], + owl:onProperty biolink:description ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:category ], + owl:maxCardinality 1 ; + owl:onProperty biolink:description ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:deprecated ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:iri_type ; - owl:onProperty biolink:iri ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:description ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ], + owl:onProperty biolink:iri ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:description ], + owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:category ], [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; - owl:onProperty biolink:name ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:iri ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_attribute ], [ a owl:Restriction ; owl:allValuesFrom xsd:boolean ; owl:onProperty biolink:deprecated ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Attribute ; + owl:onProperty biolink:has_attribute ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:name ], + owl:onProperty biolink:iri ], [ a owl:Restriction ; - owl:allValuesFrom biolink:narrative_text ; - owl:onProperty biolink:description ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:type ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:description ], + owl:minCardinality 0 ; + owl:onProperty biolink:category ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:name ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:deprecated ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:name ], @@ -11038,13 +11147,13 @@ biolink:NucleicAcidEntity a owl:Class ; rdfs:label "nucleic acid entity" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ThingWithTaxon ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:ThingWithTaxon ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], @@ -11057,20 +11166,17 @@ biolink:NucleicAcidEntity a owl:Class ; skos:narrowMatch STY:T086, STY:T114 . -biolink:label_type a rdfs:Datatype ; - owl:equivalentClass xsd:string . - biolink:OrganismalEntity a owl:Class ; rdfs:label "organismal entity" ; rdfs:subClassOf [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:SubjectOfInvestigation ], + [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_attribute ], [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:has_attribute ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:SubjectOfInvestigation ], biolink:BiologicalEntity ; skos:definition "A named entity that is either a part of an organism, a whole organism, population or clade of organisms, excluding chemical entities" ; skos:exactMatch , @@ -11135,29 +11241,6 @@ biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum a owl:Class ; , . -biolink:Disease a owl:Class ; - rdfs:label "disease" ; - rdfs:subClassOf biolink:DiseaseOrPhenotypicFeature ; - skos:altLabel "condition", - "disorder", - "medical condition" ; - skos:definition "A disorder of structure or function, especially one that produces specific signs, phenotypes or symptoms or that affects a specific location and is not simply a direct result of physical injury. A disposition to undergo pathological processes that exists in an organism because of one or more disorders in that organism." ; - skos:exactMatch STY:T047, - , - , - , - SIO:010299, - dcid:Disease, - UMLSSG:DISO, - WIKIDATA:Q12136 ; - skos:inScheme ; - skos:narrowMatch STY:T019, - STY:T020, - STY:T048, - STY:T049, - STY:T191, - . - biolink:EntityToDiseaseAssociationMixin a owl:Class ; rdfs:label "entity to disease association mixin" ; rdfs:subClassOf biolink:EntityToFeatureOrDiseaseQualifiersMixin ; @@ -11178,53 +11261,82 @@ biolink:GeneOrGeneProductOrChemicalPartQualifierEnum a owl:Class ; biolink:BiologicalProcessOrActivity a owl:Class ; rdfs:label "biological process or activity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:Occurrent ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:enabled_by ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:has_input ], [ a owl:Restriction ; owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:has_output ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_output ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_output ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:minCardinality 0 ; owl:onProperty biolink:has_input ], [ a owl:Restriction ; owl:allValuesFrom biolink:PhysicalEntity ; owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:Occurrent ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:enabled_by ], + owl:onProperty biolink:has_output ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_input ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_input ], + owl:onProperty biolink:enabled_by ], biolink:BiologicalEntity ; skos:definition "Either an individual molecular activity, or a collection of causally connected molecular activities in a biological system." ; skos:inScheme . +biolink:Disease a owl:Class ; + rdfs:label "disease" ; + rdfs:subClassOf biolink:DiseaseOrPhenotypicFeature ; + skos:altLabel "condition", + "disorder", + "medical condition" ; + skos:definition "A disorder of structure or function, especially one that produces specific signs, phenotypes or symptoms or that affects a specific location and is not simply a direct result of physical injury. A disposition to undergo pathological processes that exists in an organism because of one or more disorders in that organism." ; + skos:exactMatch STY:T047, + , + , + , + SIO:010299, + dcid:Disease, + UMLSSG:DISO, + WIKIDATA:Q12136 ; + skos:inScheme ; + skos:narrowMatch STY:T019, + STY:T020, + STY:T048, + STY:T049, + STY:T191, + . + biolink:Agent a owl:Class ; rdfs:label "agent" ; rdfs:subClassOf [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:name ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:address ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:affiliation ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:address ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:id ], @@ -11233,22 +11345,16 @@ biolink:Agent a owl:Class ; owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:name ], + owl:onProperty biolink:address ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:address ], + owl:maxCardinality 1 ; + owl:onProperty biolink:name ], [ a owl:Restriction ; owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:affiliation ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:address ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:affiliation ], biolink:AdministrativeEntity ; skos:altLabel "group" ; skos:definition "person, group, organization or project that provides a piece of information (i.e. a knowledge association)" ; @@ -11271,7 +11377,7 @@ biolink:PhysicalEssence a owl:Class ; biolink:name a owl:DatatypeProperty ; rdfs:label "name" ; rdfs:domain biolink:Entity ; - rdfs:range biolink:label_type ; + rdfs:range xsd:string ; skos:altLabel "display name", "label", "title" ; @@ -11364,13 +11470,13 @@ biolink:DirectionQualifierEnum a owl:Class ; biolink:MolecularEntity a owl:Class ; rdfs:label "molecular entity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:boolean ; + owl:maxCardinality 1 ; owl:onProperty biolink:is_metabolite ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:boolean ; owl:onProperty biolink:is_metabolite ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:is_metabolite ], biolink:ChemicalEntity ; skos:definition "A molecular entity is a chemical entity composed of individual or covalently bonded atoms." ; @@ -11383,14 +11489,14 @@ biolink:MolecularEntity a owl:Class ; biolink:OrganismTaxon a owl:Class ; rdfs:label "organism taxon" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_taxonomic_rank ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_taxonomic_rank ], [ a owl:Restriction ; owl:allValuesFrom biolink:TaxonomicRank ; owl:onProperty biolink:has_taxonomic_rank ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_taxonomic_rank ], biolink:NamedThing ; skos:altLabel "taxon", "taxonomic classification" ; @@ -11421,16 +11527,10 @@ biolink:InformationContentEntity a owl:Class ; rdfs:label "information content entity" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:license ], + owl:onProperty biolink:creation_date ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:license ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:rights ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:format ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:format ], @@ -11439,22 +11539,28 @@ biolink:InformationContentEntity a owl:Class ; owl:onProperty biolink:creation_date ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:rights ], + owl:onProperty biolink:format ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:rights ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:license ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:rights ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:creation_date ], + owl:onProperty biolink:license ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:creation_date ], + owl:onProperty biolink:license ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:format ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:rights ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:creation_date ], biolink:NamedThing ; skos:altLabel "information", "information artefact", @@ -11512,50 +11618,50 @@ biolink:CausalMechanismQualifierEnum a owl:Class ; biolink:Attribute a owl:Class ; rdfs:label "attribute" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:iri_type ; - owl:onProperty biolink:iri ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:minCardinality 0 ; + owl:onProperty biolink:name ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:iri ], + owl:onProperty biolink:has_quantitative_value ], [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:name ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_attribute_type ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:has_attribute_type ], [ a owl:Restriction ; owl:allValuesFrom biolink:QuantityValue ; owl:onProperty biolink:has_quantitative_value ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_qualitative_value ], + owl:onProperty biolink:iri ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:iri ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_attribute_type ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:has_qualitative_value ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:name ], + owl:onProperty biolink:iri ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_qualitative_value ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:has_attribute_type ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:has_attribute_type ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:name ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:maxCardinality 1 ; owl:onProperty biolink:has_qualitative_value ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_quantitative_value ], + owl:maxCardinality 1 ; + owl:onProperty biolink:name ], biolink:NamedThing ; skos:definition "A property or characteristic of an entity. For example, an apple may have properties such as color, shape, age, crispiness. An environmental sample may have attributes such as depth, lat, long, material." ; skos:exactMatch SIO:000614 ; @@ -11577,41 +11683,38 @@ biolink:object_direction_qualifier a owl:ObjectProperty ; skos:definition "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; skos:inScheme . -biolink:predicate_type a rdfs:Datatype ; - owl:equivalentClass xsd:anyURI . - biolink:Gene a owl:Class ; rdfs:label "gene" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:xref ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; owl:onProperty biolink:symbol ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:GeneOrGeneProduct ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneOrGeneProduct ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:symbol ], + owl:onProperty biolink:xref ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:symbol ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GenomicEntity ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], [ a owl:Restriction ; owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:xref ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:symbol ], biolink:BiologicalEntity ; skos:broadMatch ; skos:definition "A region (or regions) that includes all of the sequence elements necessary to encode a functional transcript. A gene locus may include regulatory regions, transcribed regions and/or other functional sequence regions." ; @@ -11627,36 +11730,36 @@ biolink:SequenceVariant a owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:OntologyClass ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; owl:minCardinality 0 ; + owl:onProperty biolink:has_gene ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:id ], + owl:allValuesFrom biolink:Gene ; + owl:onProperty biolink:has_gene ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_gene ], + owl:maxCardinality 1 ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; - owl:onProperty biolink:has_gene ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_biological_sequence ], biolink:BiologicalEntity ; skos:altLabel "allele" ; skos:closeMatch , @@ -11700,68 +11803,68 @@ biolink:AnatomicalEntity a owl:Class ; biolink:Publication a owl:Class ; rdfs:label "publication" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:summary ], + owl:minCardinality 0 ; + owl:onProperty biolink:mesh_terms ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:summary ], + owl:minCardinality 0 ; + owl:onProperty biolink:authors ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:publication_type ], + owl:onProperty biolink:pages ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:keywords ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:summary ], + owl:allValuesFrom biolink:Agent ; + owl:onProperty biolink:authors ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:pages ], + owl:onProperty biolink:summary ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:authors ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:keywords ], [ a owl:Restriction ; owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:xref ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:pages ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:name ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:summary ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:xref ], + owl:minCardinality 1 ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:publication_type ], [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:mesh_terms ], + owl:minCardinality 0 ; + owl:onProperty biolink:xref ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:keywords ], + owl:minCardinality 0 ; + owl:onProperty biolink:name ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:id ], + owl:onProperty biolink:summary ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:mesh_terms ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:id ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:publication_type ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Agent ; - owl:onProperty biolink:authors ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:id ], biolink:InformationContentEntity ; skos:definition "Any ‘published’ piece of information. Publications are considered broadly to include any document or document part made available in print or on the web - which may include scientific journal issues, individual articles, and books - as well as things like pre-prints, white papers, patents, drug labels, web pages, protocol documents, and even a part of a publication if of significant knowledge scope (e.g. a figure, figure legend, or section highlighted by NLP)." ; skos:exactMatch IAO:0000311 ; @@ -11785,56 +11888,56 @@ biolink:BiologicalEntity a owl:Class ; biolink:ChemicalEntity a owl:Class ; rdfs:label "chemical entity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:trade_name ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DrugAvailabilityEnum ; - owl:onProperty biolink:available_from ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:is_toxic ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:boolean ; - owl:onProperty biolink:is_toxic ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:max_tolerated_dose ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:trade_name ], + owl:allValuesFrom biolink:ChemicalRole ; + owl:onProperty biolink:has_chemical_role ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:is_toxic ], + owl:onProperty biolink:available_from ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:trade_name ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_chemical_role ], + owl:onProperty biolink:max_tolerated_dose ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:max_tolerated_dose ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:trade_name ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PhysicalEssence ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:max_tolerated_dose ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:DrugAvailabilityEnum ; owl:onProperty biolink:available_from ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalRole ; + owl:allValuesFrom xsd:boolean ; + owl:onProperty biolink:is_toxic ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:has_chemical_role ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:is_toxic ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:is_toxic ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:trade_name ], biolink:NamedThing ; skos:broadMatch STY:T167 ; skos:definition "A chemical entity is a physical entity that pertains to chemistry or biochemistry." ; @@ -11973,254 +12076,254 @@ biolink:association_slot a owl:DatatypeProperty ; biolink:Association a owl:Class ; rdfs:label "association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:timepoint ], + [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:adjusted_p_value ], + owl:onProperty biolink:original_predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:original_predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; + owl:onProperty biolink:original_subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:float ; + owl:onProperty biolink:adjusted_p_value ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:RetrievalSource ; + owl:onProperty biolink:retrieval_source_ids ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:original_object ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_namespace ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject_namespace ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:original_subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:timepoint ], + owl:onProperty biolink:adjusted_p_value ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:type ], + owl:onProperty biolink:qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_namespace ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:primary_knowledge_source ], + owl:onProperty biolink:knowledge_source ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:agent_type ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:time_type ; - owl:onProperty biolink:timepoint ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:category ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject_category ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:knowledge_source ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Publication ; - owl:onProperty biolink:publications ], + owl:onProperty biolink:subject_closure ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:subject_namespace ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_label_closure ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_label_closure ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:original_subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:float ; - owl:onProperty biolink:p_value ], + owl:onProperty biolink:object_label_closure ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_category ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:subject_closure ], [ a owl:Restriction ; owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:original_predicate ], + owl:onProperty biolink:category ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:original_predicate ], + owl:allValuesFrom biolink:EvidenceType ; + owl:onProperty biolink:has_evidence ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_category_closure ], + owl:onProperty biolink:has_evidence ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:adjusted_p_value ], + owl:onProperty biolink:object_category ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:knowledge_level ], + owl:minCardinality 0 ; + owl:onProperty biolink:primary_knowledge_source ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_label_closure ], + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:qualifiers ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_category ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:type ], + owl:onProperty biolink:qualifiers ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:original_object ], + owl:onProperty biolink:type ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:original_object ], + owl:onProperty biolink:timepoint ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_category ], + owl:minCardinality 0 ; + owl:onProperty biolink:p_value ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:subject_category ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_label_closure ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_label_closure ], + owl:onProperty biolink:object_namespace ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_closure ], + owl:onProperty biolink:knowledge_source ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:negated ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:boolean ; + owl:onProperty biolink:negated ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_namespace ], + owl:onProperty biolink:publications ], [ a owl:Restriction ; owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:qualifiers ], + owl:onProperty biolink:object_category_closure ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:KnowledgeLevelEnum ; + owl:onProperty biolink:knowledge_level ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:subject_namespace ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_category_closure ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:original_subject ], + owl:onProperty biolink:p_value ], [ a owl:Restriction ; - owl:allValuesFrom xsd:boolean ; - owl:onProperty biolink:negated ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_category_closure ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:knowledge_level ], + owl:minCardinality 0 ; + owl:onProperty biolink:knowledge_source ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:AgentTypeEnum ; + owl:onProperty biolink:agent_type ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:primary_knowledge_source ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:object_category ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:KnowledgeLevelEnum ; - owl:onProperty biolink:knowledge_level ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_closure ], [ a owl:Restriction ; owl:allValuesFrom biolink:OntologyClass ; owl:onProperty biolink:subject_category_closure ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AgentTypeEnum ; - owl:onProperty biolink:agent_type ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_namespace ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_label_closure ], + owl:onProperty biolink:original_object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_closure ], + owl:maxCardinality 1 ; + owl:onProperty biolink:adjusted_p_value ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:object_namespace ], [ a owl:Restriction ; owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:object_category_closure ], + owl:onProperty biolink:subject_category ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_category ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:qualifier ], + owl:onProperty biolink:negated ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:primary_knowledge_source ], + owl:onProperty biolink:original_subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:float ; owl:onProperty biolink:p_value ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:timepoint ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:negated ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:category ], + owl:onProperty biolink:original_predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:agent_type ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:aggregator_knowledge_source ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_evidence ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_category ], + owl:onProperty biolink:object_category ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:qualifier ], + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:object_category ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_namespace ], + owl:allValuesFrom biolink:Publication ; + owl:onProperty biolink:publications ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:knowledge_source ], + owl:minCardinality 0 ; + owl:onProperty biolink:aggregator_knowledge_source ], [ a owl:Restriction ; - owl:allValuesFrom biolink:EvidenceType ; - owl:onProperty biolink:has_evidence ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:RetrievalSource ; + owl:minCardinality 0 ; owl:onProperty biolink:retrieval_source_ids ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:p_value ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:aggregator_knowledge_source ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:knowledge_level ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:knowledge_source ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:qualifiers ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_closure ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_namespace ], + owl:onProperty biolink:primary_knowledge_source ], [ a owl:Restriction ; - owl:allValuesFrom xsd:float ; - owl:onProperty biolink:adjusted_p_value ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_label_closure ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:aggregator_knowledge_source ], + owl:onProperty biolink:object_closure ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:publications ], + owl:onProperty biolink:subject_category_closure ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:negated ], + owl:maxCardinality 1 ; + owl:onProperty biolink:qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:original_object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:type ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:retrieval_source_ids ], + owl:onProperty biolink:category ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:knowledge_level ], biolink:Entity ; skos:definition "A typed association between two entities, supported by evidence" ; skos:exactMatch OBAN:association, @@ -12240,38 +12343,38 @@ biolink:related_to_at_instance_level a owl:DatatypeProperty, biolink:NamedThing a owl:Class ; rdfs:label "named thing" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:xref ], - [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:provided_by ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:xref ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:full_name ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; - owl:onProperty biolink:synonym ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:category ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:provided_by ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:xref ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:synonym ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:provided_by ], + owl:onProperty biolink:category ], [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:full_name ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:synonym ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:full_name ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:category ], + owl:minCardinality 0 ; + owl:onProperty biolink:full_name ], biolink:Entity ; skos:definition "a databased entity or concept/class" ; skos:exactMatch STY:T071, @@ -12281,12 +12384,10 @@ biolink:NamedThing a owl:Class ; WIKIDATA:Q35120 ; skos:inScheme . -xsd:string a rdfs:Datatype . - biolink:predicate a owl:DatatypeProperty ; rdfs:label "predicate" ; rdfs:domain biolink:Association ; - rdfs:range biolink:predicate_type ; + rdfs:range xsd:string ; rdfs:subPropertyOf biolink:association_slot ; skos:definition "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; skos:editorialNote "Has a value from the Biolink related_to hierarchy. In RDF, this corresponds to rdf:predicate and in Neo4j this corresponds to the relationship type. The convention is for an edge label in snake_case form. For example, biolink:related_to, biolink:causes, biolink:treats" ; @@ -12294,6 +12395,10 @@ biolink:predicate a owl:DatatypeProperty ; owl:annotatedProperty ; skos:inScheme . +xsd:string a rdfs:Datatype ; + owl:equivalentClass xsd:anyURI, + xsd:time . + biolink:category a owl:DatatypeProperty ; rdfs:label "category" ; rdfs:domain biolink:Entity ; @@ -12323,419 +12428,296 @@ biolink:subject a owl:ObjectProperty ; skos:inScheme . [] a owl:Restriction ; - rdfs:subClassOf biolink:Device ; + rdfs:subClassOf biolink:EnvironmentalExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Device . + owl:someValuesFrom biolink:EnvironmentalExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:Exon ; + rdfs:subClassOf biolink:AdministrativeEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Exon . + owl:someValuesFrom biolink:AdministrativeEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToDiseaseAssociation ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PhysicalEssence . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:RetrievalSource ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToDiseaseAssociation . + owl:someValuesFrom biolink:RetrievalSource . [] a owl:Restriction ; - rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation ; + rdfs:subClassOf biolink:OrganismAttribute ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation . + owl:someValuesFrom biolink:OrganismAttribute . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalModifier ; + rdfs:subClassOf biolink:Bacterium ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalModifier . + owl:someValuesFrom biolink:Bacterium . [] a owl:Restriction ; - rdfs:subClassOf biolink:Event ; + rdfs:subClassOf biolink:MolecularEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Event . + owl:someValuesFrom biolink:MolecularEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureToLocationAssociation ; + rdfs:subClassOf biolink:ChemicalEntityAssessesNamedThingAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToLocationAssociation . + owl:someValuesFrom biolink:ChemicalEntityAssessesNamedThingAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation ; + rdfs:subClassOf biolink:PhysiologicalProcess ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation . + owl:someValuesFrom biolink:PhysiologicalProcess . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Book ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Book . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ] ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:name ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin . + owl:someValuesFrom biolink:MacromolecularMachineMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:Fungus ; + rdfs:subClassOf biolink:Device ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Fungus . + owl:someValuesFrom biolink:Device . [] a owl:Restriction ; - rdfs:subClassOf biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:DrugExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:DrugExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToPopulationAssociation ; + rdfs:subClassOf biolink:StudyVariable ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToPopulationAssociation . + owl:someValuesFrom biolink:StudyVariable . [] a owl:Restriction ; - rdfs:subClassOf biolink:LifeStage ; + rdfs:subClassOf biolink:JournalArticle ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:LifeStage . + owl:someValuesFrom biolink:JournalArticle . [] a owl:Restriction ; - rdfs:subClassOf biolink:ComplexMolecularMixture ; + rdfs:subClassOf biolink:GeneToGoTermAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ComplexMolecularMixture . + owl:someValuesFrom biolink:GeneToGoTermAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ProteinIsoform ; + rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ProteinIsoform . + owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:RNAProduct ; + rdfs:subClassOf biolink:ProcessedMaterial ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RNAProduct . + owl:someValuesFrom biolink:ProcessedMaterial . [] a owl:Restriction ; - rdfs:subClassOf biolink:ObservedExpectedFrequencyAnalysisResult ; + rdfs:subClassOf biolink:Polypeptide ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ObservedExpectedFrequencyAnalysisResult . + owl:someValuesFrom biolink:Polypeptide . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhysiologicalProcess ; + rdfs:subClassOf biolink:GeneToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhysiologicalProcess . + owl:someValuesFrom biolink:GeneToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MacromolecularMachineToBiologicalProcessAssociation ; + rdfs:subClassOf biolink:Exon ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MacromolecularMachineToBiologicalProcessAssociation . + owl:someValuesFrom biolink:Exon . [] a owl:Restriction ; - rdfs:subClassOf biolink:CellularOrganism ; + rdfs:subClassOf biolink:InformationContentEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellularOrganism . + owl:someValuesFrom biolink:InformationContentEntity . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:MaterialSample ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:MaterialSampleToEntityAssociationMixin . + rdfs:subClassOf biolink:ExonToTranscriptRelationship ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ExonToTranscriptRelationship . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation ; + rdfs:subClassOf biolink:Serial ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation . + owl:someValuesFrom biolink:Serial . [] a owl:Restriction ; - rdfs:subClassOf biolink:Patent ; + rdfs:subClassOf biolink:InformationContentEntityToNamedThingAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Patent . + owl:someValuesFrom biolink:InformationContentEntityToNamedThingAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:EntityToDiseaseAssociation ; + rdfs:subClassOf biolink:SocioeconomicAttribute ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EntityToDiseaseAssociation . + owl:someValuesFrom biolink:SocioeconomicAttribute . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismalEntity ; + rdfs:subClassOf biolink:PreprintPublication ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismalEntity . + owl:someValuesFrom biolink:PreprintPublication . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:VariantToEntityAssociationMixin . + owl:someValuesFrom biolink:SensitivityQuantifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToGeneExpressionAssociation ; + rdfs:subClassOf biolink:PhenotypicFeatureToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToGeneExpressionAssociation . + owl:someValuesFrom biolink:PhenotypicFeatureToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:TranscriptionFactorBindingSite ; + rdfs:subClassOf biolink:Plant ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:TranscriptionFactorBindingSite . + owl:someValuesFrom biolink:Plant . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:PhenotypicFeature ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:has_quotient ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:has_percentage ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom xsd:double ; + owl:onProperty biolink:has_quotient ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom xsd:double ; + owl:onProperty biolink:has_percentage ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_total ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:has_total ], [ a owl:Restriction ; - owl:allValuesFrom biolink:BiologicalSex ; - owl:onProperty biolink:sex_qualifier ], + owl:allValuesFrom xsd:integer ; + owl:onProperty biolink:has_total ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:sex_qualifier ], + owl:onProperty biolink:has_count ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:integer ; + owl:onProperty biolink:has_count ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:sex_qualifier ] ; + owl:onProperty biolink:has_quotient ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_count ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_percentage ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin . + owl:someValuesFrom biolink:FrequencyQuantifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:FunctionalAssociation ; + rdfs:subClassOf biolink:IndividualOrganism ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:FunctionalAssociation . + owl:someValuesFrom biolink:IndividualOrganism . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenomicSequenceLocalization ; + rdfs:subClassOf biolink:ChemicalGeneInteractionAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenomicSequenceLocalization . + owl:someValuesFrom biolink:ChemicalGeneInteractionAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:DrugLabel ; + rdfs:subClassOf biolink:CellularOrganism ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DrugLabel . + owl:someValuesFrom biolink:CellularOrganism . [] a owl:Restriction ; - rdfs:subClassOf biolink:ContributorAssociation ; + rdfs:subClassOf biolink:PairwiseGeneToGeneInteraction ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ContributorAssociation . + owl:someValuesFrom biolink:PairwiseGeneToGeneInteraction . [] a owl:Restriction ; - rdfs:subClassOf biolink:BioticExposure ; + rdfs:subClassOf biolink:ChemicalToPathwayAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BioticExposure . + owl:someValuesFrom biolink:ChemicalToPathwayAssociation . [] a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide . + owl:someValuesFrom biolink:Occurrent . [] a owl:Restriction ; - rdfs:subClassOf biolink:DatasetVersion ; + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:has_biological_sequence ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_biological_sequence ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_biological_sequence ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EpigenomicEntity . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:RegulatoryRegion ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DatasetVersion . + owl:someValuesFrom biolink:RegulatoryRegion . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureExposure ; + rdfs:subClassOf biolink:EnvironmentalFeature ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureExposure . + owl:someValuesFrom biolink:EnvironmentalFeature . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalToChemicalAssociation ; + rdfs:subClassOf biolink:Hospitalization ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalToChemicalAssociation . + owl:someValuesFrom biolink:Hospitalization . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:SpecificityQuantifier . + rdfs:subClassOf biolink:EnvironmentalProcess ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:EnvironmentalProcess . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChiSquaredAnalysisResult ; + rdfs:subClassOf biolink:AnatomicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChiSquaredAnalysisResult . + owl:someValuesFrom biolink:AnatomicalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:Treatment ; + rdfs:subClassOf biolink:MicroRNA ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Treatment . + owl:someValuesFrom biolink:MicroRNA . [] a owl:Restriction ; - rdfs:subClassOf biolink:BiologicalSex ; + rdfs:subClassOf biolink:Transcript ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BiologicalSex . + owl:someValuesFrom biolink:Transcript . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_direction_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:subject_direction_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_direction_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FeatureOrDiseaseQualifiersToEntityMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:StudyPopulation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:StudyPopulation . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:SocioeconomicAttribute ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SocioeconomicAttribute . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismToOrganismAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismToOrganismAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:PathologicalProcess ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PathologicalProcess . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:SmallMolecule ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SmallMolecule . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:JournalArticle ; + rdfs:subClassOf biolink:Pathway ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:JournalArticle . + owl:someValuesFrom biolink:Pathway . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhenotypicQuality ; + rdfs:subClassOf biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhenotypicQuality . + owl:someValuesFrom biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:EnvironmentalProcess ; + rdfs:subClassOf biolink:ClinicalTrial ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EnvironmentalProcess . + owl:someValuesFrom biolink:ClinicalTrial . [] a owl:Restriction ; - rdfs:subClassOf biolink:PosttranslationalModification ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PosttranslationalModification . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneOrGeneProduct . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; @@ -12743,30 +12725,45 @@ biolink:subject a owl:ObjectProperty ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Outcome ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToOutcomeAssociationMixin . + owl:someValuesFrom biolink:GeneToEntityAssociationMixin . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Zygosity ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Zygosity . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:OrganismalEntity ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:OrganismalEntity . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:ChemicalMixture ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ChemicalMixture . [] a owl:Restriction ; rdfs:subClassOf biolink:Publication ; @@ -12774,231 +12771,280 @@ biolink:subject a owl:ObjectProperty ; owl:someValuesFrom biolink:Publication . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalAffectsGeneAssociation ; + rdfs:subClassOf biolink:GeographicExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalAffectsGeneAssociation . + owl:someValuesFrom biolink:GeographicExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:PathologicalProcessExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:PathologicalProcessExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:RelativeFrequencyAnalysisResult ; + rdfs:subClassOf biolink:OrganismalEntityAsAModelOfDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RelativeFrequencyAnalysisResult . + owl:someValuesFrom biolink:OrganismalEntityAsAModelOfDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneAsAModelOfDiseaseAssociation ; + rdfs:subClassOf biolink:ProteinIsoform ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneAsAModelOfDiseaseAssociation . + owl:someValuesFrom biolink:ProteinIsoform . [] a owl:Restriction ; - rdfs:subClassOf biolink:WebPage ; + rdfs:subClassOf biolink:Mammal ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:WebPage . + owl:someValuesFrom biolink:Mammal . [] a owl:Restriction ; - rdfs:subClassOf biolink:SocioeconomicExposure ; + rdfs:subClassOf biolink:PhenotypicFeatureToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SocioeconomicExposure . + owl:someValuesFrom biolink:PhenotypicFeatureToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalTrial ; + rdfs:subClassOf biolink:MaterialSample ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalTrial . + owl:someValuesFrom biolink:MaterialSample . [] a owl:Restriction ; - rdfs:subClassOf biolink:StudyVariable ; + rdfs:subClassOf biolink:ReactionToCatalystAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:StudyVariable . + owl:someValuesFrom biolink:ReactionToCatalystAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhenotypicSex ; + rdfs:subClassOf biolink:VariantToGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhenotypicSex . + owl:someValuesFrom biolink:VariantToGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ReactionToParticipantAssociation ; + rdfs:subClassOf biolink:EvidenceType ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ReactionToParticipantAssociation . + owl:someValuesFrom biolink:EvidenceType . [] a owl:Restriction ; - rdfs:subClassOf biolink:AccessibleDnaRegion ; + rdfs:subClassOf biolink:EntityToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AccessibleDnaRegion . + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Case ; + rdfs:subClassOf biolink:CausalGeneToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Case . + owl:someValuesFrom biolink:CausalGeneToDiseaseAssociation . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PathognomonicityQuantifier . + rdfs:subClassOf biolink:ClinicalFinding ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ClinicalFinding . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Drug ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DrugToEntityAssociationMixin . + rdfs:subClassOf biolink:ContributorAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ContributorAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; - owl:onProperty biolink:subject ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ] ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_biological_sequence ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin . + owl:someValuesFrom biolink:GenomicEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:ExposureEventToOutcomeAssociation ; + rdfs:subClassOf biolink:OrganismTaxon ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ExposureEventToOutcomeAssociation . + owl:someValuesFrom biolink:OrganismTaxon . [] a owl:Restriction ; - rdfs:subClassOf biolink:SiRNA ; + rdfs:subClassOf biolink:ConceptCountAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SiRNA . + owl:someValuesFrom biolink:ConceptCountAnalysisResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:RetrievalSource ; + rdfs:subClassOf biolink:GeneFamily ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RetrievalSource . + owl:someValuesFrom biolink:GeneFamily . [] a owl:Restriction ; - rdfs:subClassOf biolink:EnvironmentalFoodContaminant ; + rdfs:subClassOf biolink:GeneToGeneHomologyAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EnvironmentalFoodContaminant . + owl:someValuesFrom biolink:GeneToGeneHomologyAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonInteraction ; + rdfs:subClassOf biolink:Activity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonInteraction . + owl:someValuesFrom biolink:Activity . [] a owl:Restriction ; - rdfs:subClassOf biolink:ExposureEventToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:BehaviorToBehavioralFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ExposureEventToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:BehaviorToBehavioralFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismalEntityAsAModelOfDiseaseAssociation ; + rdfs:subClassOf biolink:PathologicalProcess ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismalEntityAsAModelOfDiseaseAssociation . + owl:someValuesFrom biolink:PathologicalProcess . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + rdfs:subClassOf biolink:Phenomenon ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Phenomenon . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:CellLineAsAModelOfDiseaseAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:CellLineAsAModelOfDiseaseAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:GeographicLocation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GeographicLocation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:ExposureEventToPhenotypicFeatureAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ExposureEventToPhenotypicFeatureAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Behavior ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Behavior . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:MolecularMixture ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:MolecularMixture . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:ReactionToParticipantAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ReactionToParticipantAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ExposureEvent ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:maxCardinality 1 ; + owl:onProperty biolink:frequency_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ] ; + owl:minCardinality 0 ; + owl:onProperty biolink:frequency_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom ; + owl:onProperty biolink:frequency_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToExposureEventAssociationMixin . + owl:someValuesFrom biolink:FrequencyQualifierMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenomicBackgroundExposure ; + rdfs:subClassOf biolink:TranscriptionFactorBindingSite ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenomicBackgroundExposure . + owl:someValuesFrom biolink:TranscriptionFactorBindingSite . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass . + rdfs:subClassOf biolink:PopulationOfIndividualOrganisms ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:PopulationOfIndividualOrganisms . [] a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PathologicalEntityMixin . + owl:someValuesFrom biolink:Outcome . [] a owl:Restriction ; - rdfs:subClassOf biolink:Association ; + rdfs:subClassOf biolink:GenotypeToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Association . + owl:someValuesFrom biolink:GenotypeToPhenotypicFeatureAssociation . [] a owl:Restriction ; + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:object_aspect_qualifier ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:Occurrent . + owl:someValuesFrom biolink:EntityToFeatureOrDiseaseQualifiersMixin . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:Outcome . + rdfs:subClassOf biolink:VariantToPopulationAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:VariantToPopulationAssociation . [] a owl:Restriction ; rdfs:subClassOf biolink:TranscriptToGeneRelationship ; @@ -13006,19 +13052,40 @@ biolink:subject a owl:ObjectProperty ; owl:someValuesFrom biolink:TranscriptToGeneRelationship . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalMeasurement ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalMeasurement . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:GeneHasVariantThatContributesToDiseaseAssociation ; + rdfs:subClassOf biolink:BookChapter ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneHasVariantThatContributesToDiseaseAssociation . + owl:someValuesFrom biolink:BookChapter . [] a owl:Restriction ; - rdfs:subClassOf biolink:MaterialSampleDerivationAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MaterialSampleDerivationAssociation . + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:onProperty biolink:object ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin . [] a owl:Restriction ; rdfs:subClassOf biolink:GenotypeToGenotypePartAssociation ; @@ -13026,705 +13093,762 @@ biolink:subject a owl:ObjectProperty ; owl:someValuesFrom biolink:GenotypeToGenotypePartAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseOrPhenotypicFeature ; + rdfs:subClassOf biolink:ChemicalAffectsGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeature . + owl:someValuesFrom biolink:ChemicalAffectsGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Mammal ; + rdfs:subClassOf biolink:DiseaseOrPhenotypicFeature ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Mammal . + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeature . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeographicLocation ; + rdfs:subClassOf biolink:BioticExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeographicLocation . + owl:someValuesFrom biolink:BioticExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:BookChapter ; + rdfs:subClassOf biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BookChapter . + owl:someValuesFrom biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToDiseaseAssociation ; + rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureToLocationAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToDiseaseAssociation . + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToLocationAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityAssociation ; + rdfs:subClassOf biolink:NamedThing ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityAssociation . + owl:someValuesFrom biolink:NamedThing . [] a owl:Restriction ; - rdfs:subClassOf biolink:IndividualOrganism ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:IndividualOrganism . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:SpecificityQuantifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypicSex ; + rdfs:subClassOf biolink:CellularComponent ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypicSex . + owl:someValuesFrom biolink:CellularComponent . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalToPathwayAssociation ; + rdfs:subClassOf biolink:BiologicalSex ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalToPathwayAssociation . + owl:someValuesFrom biolink:BiologicalSex . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:MaterialSample ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin . + owl:someValuesFrom biolink:MaterialSampleToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:Entity ; + rdfs:subClassOf biolink:DrugToGeneInteractionExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Entity . + owl:someValuesFrom biolink:DrugToGeneInteractionExposure . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:BehavioralExposure ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:BehavioralExposure . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:PlanetaryEntity ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:PlanetaryEntity . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:ClinicalEntity ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ClinicalEntity . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:LifeStage ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:LifeStage . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; - owl:onProperty biolink:subject ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ] ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_direction_qualifier ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin . + owl:someValuesFrom biolink:FeatureOrDiseaseQualifiersToEntityMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:NoncodingRNAProduct ; + rdfs:subClassOf biolink:Agent ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NoncodingRNAProduct . + owl:someValuesFrom biolink:Agent . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhenotypicFeatureToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:ProteinDomain ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhenotypicFeatureToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:ProteinDomain . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:WebPage ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:WebPage . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:DatasetSummary ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:DatasetSummary . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:MacromolecularComplex ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:MacromolecularComplex . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:in_taxon ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:in_taxon ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:in_taxon_label ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:in_taxon_label ], + [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_gene_or_gene_product ], + owl:onProperty biolink:in_taxon ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; - owl:onProperty biolink:has_gene_or_gene_product ] ; + owl:minCardinality 0 ; + owl:onProperty biolink:in_taxon_label ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneGroupingMixin . + owl:someValuesFrom biolink:ThingWithTaxon . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToGeneAssociation ; + rdfs:subClassOf biolink:PhenotypicFeature ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToGeneAssociation . + owl:someValuesFrom biolink:PhenotypicFeature . [] a owl:Restriction ; - rdfs:subClassOf biolink:PreprintPublication ; + rdfs:subClassOf biolink:LogOddsAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PreprintPublication . + owl:someValuesFrom biolink:LogOddsAnalysisResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:BehavioralFeature ; + rdfs:subClassOf biolink:CommonDataElement ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BehavioralFeature . + owl:someValuesFrom biolink:CommonDataElement . [] a owl:Restriction ; - rdfs:subClassOf biolink:Food ; + rdfs:subClassOf biolink:StudyResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Food . + owl:someValuesFrom biolink:StudyResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:Gene ; + rdfs:subClassOf biolink:FoodAdditive ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Gene . + owl:someValuesFrom biolink:FoodAdditive . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeAsAModelOfDiseaseAssociation ; + rdfs:subClassOf biolink:Human ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeAsAModelOfDiseaseAssociation . + owl:someValuesFrom biolink:Human . [] a owl:Restriction ; - rdfs:subClassOf biolink:Bacterium ; + rdfs:subClassOf biolink:SeverityValue ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Bacterium . + owl:someValuesFrom biolink:SeverityValue . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:sex_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:sex_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:BiologicalSex ; - owl:onProperty biolink:sex_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:PhenotypicFeature ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhenotypicFeatureToEntityAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:in_taxon ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:in_taxon_label ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; - owl:onProperty biolink:in_taxon_label ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:in_taxon_label ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:in_taxon ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:in_taxon ] ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ThingWithTaxon . + owl:someValuesFrom biolink:ChemicalEntityToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:EntityToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:Disease ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:Disease . [] a owl:Restriction ; - rdfs:subClassOf biolink:Activity ; + rdfs:subClassOf biolink:ProteinFamily ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Activity . + owl:someValuesFrom biolink:ProteinFamily . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToExpressionSiteAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToExpressionSiteAssociation . + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Outcome ; + owl:onProperty biolink:object ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToOutcomeAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:PopulationToPopulationAssociation ; + rdfs:subClassOf biolink:AccessibleDnaRegion ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PopulationToPopulationAssociation . + owl:someValuesFrom biolink:AccessibleDnaRegion . [] a owl:Restriction ; + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:CellLine ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:RelationshipQuantifier . + owl:someValuesFrom biolink:CellLineToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:ProteinDomain ; + rdfs:subClassOf biolink:VariantAsAModelOfDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ProteinDomain . + owl:someValuesFrom biolink:VariantAsAModelOfDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Cell ; + rdfs:subClassOf biolink:ComplexMolecularMixture ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Cell . + owl:someValuesFrom biolink:ComplexMolecularMixture . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalCourse ; + rdfs:subClassOf biolink:ProcessRegulatesProcessAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalCourse . + owl:someValuesFrom biolink:ProcessRegulatesProcessAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Invertebrate ; + rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Invertebrate . + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneHomologyAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneHomologyAssociation . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneProductIsoformMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToGeneAssociation ; + rdfs:subClassOf biolink:Onset ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToGeneAssociation . + owl:someValuesFrom biolink:Onset . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularEntity ; + rdfs:subClassOf biolink:ClinicalCourse ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularEntity . + owl:someValuesFrom biolink:ClinicalCourse . [] a owl:Restriction ; - rdfs:subClassOf biolink:Snv ; + rdfs:subClassOf biolink:Vertebrate ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Snv . + owl:someValuesFrom biolink:Vertebrate . [] a owl:Restriction ; - rdfs:subClassOf biolink:Human ; + rdfs:subClassOf biolink:SequenceVariantModulatesTreatmentAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Human . + owl:someValuesFrom biolink:SequenceVariantModulatesTreatmentAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularActivity ; + rdfs:subClassOf biolink:GeneAffectsChemicalAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularActivity . + owl:someValuesFrom biolink:GeneAffectsChemicalAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToDiseaseOrPhenotypicFeatureAssociation . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneCoexpressionAssociation ; + rdfs:subClassOf biolink:Food ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneCoexpressionAssociation . + owl:someValuesFrom biolink:Food . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToDiseaseAssociation ; + rdfs:subClassOf biolink:NucleosomeModification ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToDiseaseAssociation . + owl:someValuesFrom biolink:NucleosomeModification . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:SequenceAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:SequenceAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation ; + rdfs:subClassOf biolink:Dataset ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation . + owl:someValuesFrom biolink:Dataset . [] a owl:Restriction ; - rdfs:subClassOf biolink:Genotype ; + rdfs:subClassOf biolink:OrganismTaxonToEnvironmentAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Genotype . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneOrGeneProduct . + owl:someValuesFrom biolink:OrganismTaxonToEnvironmentAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Hospitalization ; + rdfs:subClassOf biolink:RNAProduct ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Hospitalization . + owl:someValuesFrom biolink:RNAProduct . [] a owl:Restriction ; - rdfs:subClassOf biolink:Cohort ; + rdfs:subClassOf biolink:ChemicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Cohort . + owl:someValuesFrom biolink:ChemicalEntity . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:quantifier_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:expression_site ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:quantifier_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:expression_site ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:stage_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:stage_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; - owl:onProperty biolink:phenotypic_state ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:LifeStage ; - owl:onProperty biolink:stage_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:quantifier_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:phenotypic_state ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:phenotypic_state ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:expression_site ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneExpressionMixin . + rdfs:subClassOf biolink:DruggableGeneToDiseaseAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:DruggableGeneToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalEntity ; + rdfs:subClassOf biolink:SocioeconomicExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalEntity . + owl:someValuesFrom biolink:SocioeconomicExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularActivityToChemicalEntityAssociation ; + rdfs:subClassOf biolink:GenotypeToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularActivityToChemicalEntityAssociation . + owl:someValuesFrom biolink:GenotypeToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalRole ; + rdfs:subClassOf biolink:GeneAsAModelOfDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalRole . + owl:someValuesFrom biolink:GeneAsAModelOfDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:BiologicalProcessOrActivity ; + rdfs:subClassOf biolink:ChemicalToChemicalAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BiologicalProcessOrActivity . + owl:someValuesFrom biolink:ChemicalToChemicalAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularActivityToMolecularActivityAssociation ; + rdfs:subClassOf biolink:Genotype ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularActivityToMolecularActivityAssociation . + owl:someValuesFrom biolink:Genotype . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:xref ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 0 ; + owl:onProperty biolink:synonym ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:synonym ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ] ; + owl:minCardinality 0 ; + owl:onProperty biolink:xref ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin . + owl:someValuesFrom biolink:GeneProductMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:Procedure ; + rdfs:subClassOf biolink:GenotypeAsAModelOfDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Procedure . + owl:someValuesFrom biolink:GenotypeAsAModelOfDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeographicExposure ; + rdfs:subClassOf biolink:Drug ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeographicExposure . + owl:someValuesFrom biolink:Drug . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalIntervention ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalIntervention . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ActivityAndBehavior . [] a owl:Restriction ; - rdfs:subClassOf biolink:LogOddsAnalysisResult ; + rdfs:subClassOf biolink:EntityToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:LogOddsAnalysisResult . + owl:someValuesFrom biolink:EntityToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ConceptCountAnalysisResult ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ConceptCountAnalysisResult . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:SubjectOfInvestigation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Plant ; + rdfs:subClassOf biolink:GenotypeToGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Plant . + owl:someValuesFrom biolink:GenotypeToGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Dataset ; + rdfs:subClassOf biolink:ClinicalIntervention ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Dataset . + owl:someValuesFrom biolink:ClinicalIntervention . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; + owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Virus ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Virus . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:PhenotypicFeature ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhenotypicFeature . + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:MacromolecularComplex ; + rdfs:subClassOf biolink:GeneticInheritance ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MacromolecularComplex . + owl:someValuesFrom biolink:GeneticInheritance . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneRegulatesGeneAssociation ; + rdfs:subClassOf biolink:BiologicalProcessOrActivity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneRegulatesGeneAssociation . + owl:someValuesFrom biolink:BiologicalProcessOrActivity . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalFinding ; + rdfs:subClassOf biolink:MacromolecularMachineToMolecularActivityAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalFinding . + owl:someValuesFrom biolink:MacromolecularMachineToMolecularActivityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ComplexChemicalExposure ; + rdfs:subClassOf biolink:MolecularActivityToChemicalEntityAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ComplexChemicalExposure . + owl:someValuesFrom biolink:MolecularActivityToChemicalEntityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:CellLineAsAModelOfDiseaseAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellLineAsAModelOfDiseaseAssociation . + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:SequenceAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SequenceAssociation . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PathognomonicityQuantifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:Haplotype ; + rdfs:subClassOf biolink:ReagentTargetedGene ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Haplotype . + owl:someValuesFrom biolink:ReagentTargetedGene . [] a owl:Restriction ; - rdfs:subClassOf biolink:PathologicalAnatomicalStructure ; + rdfs:subClassOf biolink:ChemicalRole ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PathologicalAnatomicalStructure . + owl:someValuesFrom biolink:ChemicalRole . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:CellLine ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:CellLine . [] a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneProductIsoformMixin . + owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularMixture ; + rdfs:subClassOf biolink:Snv ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularMixture . + owl:someValuesFrom biolink:Snv . [] a owl:Restriction ; - rdfs:subClassOf biolink:Genome ; + rdfs:subClassOf biolink:ClinicalMeasurement ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Genome . + owl:someValuesFrom biolink:ClinicalMeasurement . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ] ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin . + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:DrugToGeneAssociation ; + rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DrugToGeneAssociation . + owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MicroRNA ; + rdfs:subClassOf biolink:Case ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MicroRNA . + owl:someValuesFrom biolink:Case . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiagnosticAid ; + rdfs:subClassOf biolink:MacromolecularMachineToCellularComponentAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiagnosticAid . + owl:someValuesFrom biolink:MacromolecularMachineToCellularComponentAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ProcessedMaterial ; + rdfs:subClassOf biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ProcessedMaterial . + owl:someValuesFrom biolink:GeneToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalEntity ; + rdfs:subClassOf biolink:ConfidenceLevel ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalEntity . + owl:someValuesFrom biolink:ConfidenceLevel . [] a owl:Restriction ; - rdfs:subClassOf biolink:Zygosity ; + rdfs:subClassOf biolink:GeneToExpressionSiteAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Zygosity . + owl:someValuesFrom biolink:GeneToExpressionSiteAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MacromolecularMachineToMolecularActivityAssociation ; + rdfs:subClassOf biolink:ExposureEventToOutcomeAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MacromolecularMachineToMolecularActivityAssociation . + owl:someValuesFrom biolink:ExposureEventToOutcomeAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismAttribute ; + rdfs:subClassOf biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismAttribute . + owl:someValuesFrom biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:PairwiseMolecularInteraction ; + rdfs:subClassOf biolink:TextMiningResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PairwiseMolecularInteraction . + owl:someValuesFrom biolink:TextMiningResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:RegulatoryRegion ; + rdfs:subClassOf biolink:Protein ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RegulatoryRegion . + owl:someValuesFrom biolink:Protein . [] a owl:Restriction ; - rdfs:subClassOf biolink:Serial ; + rdfs:subClassOf biolink:Virus ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Serial . + owl:someValuesFrom biolink:Virus . [] a owl:Restriction ; - rdfs:subClassOf biolink:Transcript ; + rdfs:subClassOf biolink:CodingSequence ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Transcript . + owl:someValuesFrom biolink:CodingSequence . [] a owl:Restriction ; - rdfs:subClassOf biolink:Agent ; + rdfs:subClassOf biolink:Entity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Agent . + owl:someValuesFrom biolink:Entity . [] a owl:Restriction ; - rdfs:subClassOf biolink:Polypeptide ; + rdfs:subClassOf biolink:ChemicalToChemicalDerivationAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Polypeptide . + owl:someValuesFrom biolink:ChemicalToChemicalDerivationAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantAsAModelOfDiseaseAssociation ; + rdfs:subClassOf biolink:NoncodingRNAProduct ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantAsAModelOfDiseaseAssociation . + owl:someValuesFrom biolink:NoncodingRNAProduct . [] a owl:Restriction ; - rdfs:subClassOf biolink:CommonDataElement ; + rdfs:subClassOf biolink:Patent ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CommonDataElement . + owl:someValuesFrom biolink:Patent . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:frequency_qualifier ], + owl:onProperty biolink:timepoint ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:minCardinality 0 ; + owl:onProperty biolink:timepoint ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:timepoint ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ExposureEvent . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:DrugLabel ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:DrugLabel . + +[] a owl:Restriction ; + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:Genotype ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], @@ -13735,29 +13859,29 @@ biolink:subject a owl:ObjectProperty ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:frequency_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom ; - owl:onProperty biolink:frequency_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FrequencyQualifierMixin . + owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:AnatomicalEntity ; + rdfs:subClassOf biolink:ObservedExpectedFrequencyAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AnatomicalEntity . + owl:someValuesFrom biolink:ObservedExpectedFrequencyAnalysisResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:ExonToTranscriptRelationship ; + rdfs:subClassOf biolink:DatasetVersion ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ExonToTranscriptRelationship . + owl:someValuesFrom biolink:DatasetVersion . [] a owl:Restriction ; rdfs:subClassOf biolink:GrossAnatomicalStructure ; @@ -13765,783 +13889,769 @@ biolink:subject a owl:ObjectProperty ; owl:someValuesFrom biolink:GrossAnatomicalStructure . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:biological_sequence ; - owl:onProperty biolink:has_biological_sequence ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_biological_sequence ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_biological_sequence ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity . + rdfs:subClassOf biolink:ChemicalExposure ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ChemicalExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:CodingSequence ; + rdfs:subClassOf biolink:VariantToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CodingSequence . + owl:someValuesFrom biolink:VariantToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:PathologicalProcessExposure ; + rdfs:subClassOf biolink:Haplotype ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PathologicalProcessExposure . + owl:someValuesFrom biolink:Haplotype . [] a owl:Restriction ; - rdfs:subClassOf biolink:BiologicalEntity ; + rdfs:subClassOf biolink:TaxonToTaxonAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BiologicalEntity . + owl:someValuesFrom biolink:TaxonToTaxonAssociation . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityToEntityAssociationMixin . + rdfs:subClassOf biolink:CorrelatedGeneToDiseaseAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:CorrelatedGeneToDiseaseAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:PairwiseMolecularInteraction ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:PairwiseMolecularInteraction . [] a owl:Restriction ; - rdfs:subClassOf biolink:EnvironmentalExposure ; + rdfs:subClassOf biolink:MolecularActivityToMolecularActivityAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EnvironmentalExposure . + owl:someValuesFrom biolink:MolecularActivityToMolecularActivityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxon ; + rdfs:subClassOf biolink:BiologicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxon . + owl:someValuesFrom biolink:BiologicalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:TaxonToTaxonAssociation ; + rdfs:subClassOf biolink:PhysicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:TaxonToTaxonAssociation . + owl:someValuesFrom biolink:PhysicalEntity . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:GeographicLocationAtTime ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GeographicLocationAtTime . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_percentage ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:integer ; - owl:onProperty biolink:has_count ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:double ; - owl:onProperty biolink:has_quotient ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_total ], + owl:allValuesFrom biolink:ExposureEvent ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_quotient ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_total ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:integer ; - owl:onProperty biolink:has_total ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_percentage ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:double ; - owl:onProperty biolink:has_percentage ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_quotient ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_count ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_count ] ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FrequencyQuantifier . + owl:someValuesFrom biolink:EntityToExposureEventAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:EvidenceType ; + rdfs:subClassOf biolink:Association ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EvidenceType . + owl:someValuesFrom biolink:Association . [] a owl:Restriction ; - rdfs:subClassOf biolink:PairwiseGeneToGeneInteraction ; + rdfs:subClassOf biolink:MaterialSampleDerivationAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PairwiseGeneToGeneInteraction . + owl:someValuesFrom biolink:MaterialSampleDerivationAssociation . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence . + rdfs:subClassOf biolink:FunctionalAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:FunctionalAssociation . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:biological_sequence ; - owl:onProperty biolink:has_biological_sequence ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_biological_sequence ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_biological_sequence ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EpigenomicEntity . + rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:PathologicalAnatomicalExposure ; + rdfs:subClassOf biolink:GenomicBackgroundExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PathologicalAnatomicalExposure . + owl:someValuesFrom biolink:GenomicBackgroundExposure . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:Case ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ] ; + owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:CaseToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:SequenceVariant ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SequenceVariant . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalToChemicalDerivationAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalToChemicalDerivationAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneProductRelationship ; + rdfs:subClassOf biolink:RNAProductIsoform ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneProductRelationship . + owl:someValuesFrom biolink:RNAProductIsoform . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToPathwayAssociation ; + rdfs:subClassOf biolink:Fungus ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToPathwayAssociation . + owl:someValuesFrom biolink:Fungus . [] a owl:Restriction ; - rdfs:subClassOf biolink:EnvironmentalFeature ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EnvironmentalFeature . + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:PhenotypicFeature ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:sex_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:BiologicalSex ; + owl:onProperty biolink:sex_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:sex_qualifier ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PhenotypicFeatureToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:Drug ; + rdfs:subClassOf biolink:GeneToGeneProductRelationship ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Drug . + owl:someValuesFrom biolink:GeneToGeneProductRelationship . [] a owl:Restriction ; - rdfs:subClassOf biolink:NamedThing ; + rdfs:subClassOf biolink:GenotypeToVariantAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NamedThing . + owl:someValuesFrom biolink:GenotypeToVariantAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:SequenceVariantModulatesTreatmentAssociation ; + rdfs:subClassOf biolink:Cohort ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SequenceVariantModulatesTreatmentAssociation . + owl:someValuesFrom biolink:Cohort . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:symbol_type ; - owl:onProperty biolink:name ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:name ], - [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:name ] ; + owl:onProperty biolink:has_gene_or_gene_product ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Gene ; + owl:onProperty biolink:has_gene_or_gene_product ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:MacromolecularMachineMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:TextMiningResult ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:TextMiningResult . + owl:someValuesFrom biolink:GeneGroupingMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:InformationContentEntityToNamedThingAssociation ; + rdfs:subClassOf biolink:DatasetDistribution ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:InformationContentEntityToNamedThingAssociation . + owl:someValuesFrom biolink:DatasetDistribution . [] a owl:Restriction ; - rdfs:subClassOf biolink:ProteinFamily ; + rdfs:subClassOf biolink:GenotypicSex ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ProteinFamily . + owl:someValuesFrom biolink:GenotypicSex . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhenotypicFeatureToDiseaseAssociation ; + rdfs:subClassOf biolink:SequenceVariant ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhenotypicFeatureToDiseaseAssociation . + owl:someValuesFrom biolink:SequenceVariant . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToVariantAssociation ; + rdfs:subClassOf biolink:SmallMolecule ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToVariantAssociation . + owl:someValuesFrom biolink:SmallMolecule . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhysicalEntity ; + rdfs:subClassOf biolink:Study ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhysicalEntity . + owl:someValuesFrom biolink:Study . [] a owl:Restriction ; - rdfs:subClassOf biolink:PlanetaryEntity ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PlanetaryEntity . + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxonToEnvironmentAssociation ; + rdfs:subClassOf biolink:NucleicAcidSequenceMotif ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxonToEnvironmentAssociation . + owl:someValuesFrom biolink:NucleicAcidSequenceMotif . [] a owl:Restriction ; - rdfs:subClassOf biolink:BehaviorToBehavioralFeatureAssociation ; + rdfs:subClassOf biolink:VariantToGeneExpressionAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BehaviorToBehavioralFeatureAssociation . + owl:someValuesFrom biolink:VariantToGeneExpressionAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation ; + rdfs:subClassOf biolink:PopulationToPopulationAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation . + owl:someValuesFrom biolink:PopulationToPopulationAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Behavior ; + rdfs:subClassOf biolink:PhenotypicSex ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Behavior . + owl:someValuesFrom biolink:PhenotypicSex . [] a owl:Restriction ; - rdfs:subClassOf biolink:Study ; + rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonSpecialization ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Study . + owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonSpecialization . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalAttribute ; + rdfs:subClassOf biolink:Attribute ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalAttribute . + owl:someValuesFrom biolink:Attribute . [] a owl:Restriction ; - rdfs:subClassOf biolink:Protein ; + rdfs:subClassOf biolink:Procedure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Protein . + owl:someValuesFrom biolink:Procedure . [] a owl:Restriction ; - rdfs:subClassOf biolink:RNAProductIsoform ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RNAProductIsoform . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularActivityToPathwayAssociation ; + rdfs:subClassOf biolink:GeneToGeneFamilyAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularActivityToPathwayAssociation . + owl:someValuesFrom biolink:GeneToGeneFamilyAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ] ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin . + owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ProcessRegulatesProcessAssociation ; + rdfs:subClassOf biolink:DiagnosticAid ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ProcessRegulatesProcessAssociation . + owl:someValuesFrom biolink:DiagnosticAid . [] a owl:Restriction ; - rdfs:subClassOf biolink:DrugExposure ; + rdfs:subClassOf biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DrugExposure . + owl:someValuesFrom biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Onset ; + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:id ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:id ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:id ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:SequenceFeatureRelationship ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Onset . + owl:someValuesFrom biolink:SequenceFeatureRelationship . [] a owl:Restriction ; - rdfs:subClassOf biolink:NucleicAcidEntity ; + rdfs:subClassOf biolink:RelativeFrequencyAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NucleicAcidEntity . + owl:someValuesFrom biolink:RelativeFrequencyAnalysisResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:CausalGeneToDiseaseAssociation ; + rdfs:subClassOf biolink:MacromolecularMachineToBiologicalProcessAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CausalGeneToDiseaseAssociation . + owl:someValuesFrom biolink:MacromolecularMachineToBiologicalProcessAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalEntityAssessesNamedThingAssociation ; + rdfs:subClassOf biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalEntityAssessesNamedThingAssociation . + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneToEntityAssociationMixin . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:SensitivityQuantifier . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:NucleicAcidSequenceMotif ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NucleicAcidSequenceMotif . - -[] a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:CellLine ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellLine . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:CorrelatedGeneToDiseaseAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CorrelatedGeneToDiseaseAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:BehavioralExposure ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BehavioralExposure . + owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalMixture ; + rdfs:subClassOf biolink:Genome ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalMixture . + owl:someValuesFrom biolink:Genome . [] a owl:Restriction ; - rdfs:subClassOf biolink:SequenceFeatureRelationship ; + rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonInteraction ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SequenceFeatureRelationship . + owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonInteraction . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:Gene ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:Gene . [] a owl:Restriction ; + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:SubjectOfInvestigation . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:ReactionToCatalystAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ReactionToCatalystAssociation . + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:FoodAdditive ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:FoodAdditive . + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Drug ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:DrugToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:SeverityValue ; + rdfs:subClassOf biolink:DiseaseToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SeverityValue . + owl:someValuesFrom biolink:DiseaseToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:ClinicalAttribute ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:ClinicalAttribute . [] a owl:Restriction ; - rdfs:subClassOf biolink:CaseToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:ClinicalModifier ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CaseToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:ClinicalModifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalExposure ; + rdfs:subClassOf biolink:SiRNA ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalExposure . + owl:someValuesFrom biolink:SiRNA . [] a owl:Restriction ; - rdfs:subClassOf biolink:DrugToGeneInteractionExposure ; + rdfs:subClassOf biolink:MolecularActivity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DrugToGeneInteractionExposure . + owl:someValuesFrom biolink:MolecularActivity . [] a owl:Restriction ; - rdfs:subClassOf biolink:Phenomenon ; + rdfs:subClassOf biolink:ComplexChemicalExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Phenomenon . + owl:someValuesFrom biolink:ComplexChemicalExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:Attribute ; + rdfs:subClassOf biolink:MolecularActivityToPathwayAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Attribute . + owl:someValuesFrom biolink:MolecularActivityToPathwayAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:Cell ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:Cell . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneFamily ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneFamily . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:RelationshipQuantifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:Disease ; + rdfs:subClassOf biolink:GeneHasVariantThatContributesToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Disease . + owl:someValuesFrom biolink:GeneHasVariantThatContributesToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:GeneToGeneCoexpressionAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:GeneToGeneCoexpressionAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonSpecialization ; + rdfs:subClassOf biolink:Article ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonSpecialization . + owl:someValuesFrom biolink:Article . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneFamilyAssociation ; + rdfs:subClassOf biolink:GeneToGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneFamilyAssociation . + owl:someValuesFrom biolink:GeneToGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:DiseaseToExposureEventAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:DiseaseToExposureEventAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseToExposureEventAssociation ; + rdfs:subClassOf biolink:CaseToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseToExposureEventAssociation . + owl:someValuesFrom biolink:CaseToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ConfidenceLevel ; + rdfs:subClassOf biolink:DiseaseAssociatedWithResponseToChemicalEntityAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ConfidenceLevel . + owl:someValuesFrom biolink:DiseaseAssociatedWithResponseToChemicalEntityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:NucleosomeModification ; + rdfs:subClassOf biolink:GeneRegulatesGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NucleosomeModification . + owl:someValuesFrom biolink:GeneRegulatesGeneAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:synonym ], + owl:onProperty biolink:quantifier_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:xref ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:expression_site ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:xref ], + owl:onProperty biolink:stage_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:LifeStage ; + owl:onProperty biolink:stage_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:phenotypic_state ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:onProperty biolink:phenotypic_state ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:expression_site ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:quantifier_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:stage_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:phenotypic_state ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:quantifier_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; - owl:onProperty biolink:synonym ] ; + owl:minCardinality 0 ; + owl:onProperty biolink:expression_site ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneProductMixin . + owl:someValuesFrom biolink:GeneExpressionMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGoTermAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGoTermAssociation . + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:SequenceVariant ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:VariantToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:Pathway ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Pathway . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PathologicalEntityMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneAffectsChemicalAssociation ; + rdfs:subClassOf biolink:DrugToGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneAffectsChemicalAssociation . + owl:someValuesFrom biolink:DrugToGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:PopulationOfIndividualOrganisms ; + rdfs:subClassOf biolink:GenomicSequenceLocalization ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PopulationOfIndividualOrganisms . + owl:someValuesFrom biolink:GenomicSequenceLocalization . [] a owl:Restriction ; - rdfs:subClassOf biolink:DatasetSummary ; + rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DatasetSummary . + owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:StudyResult ; + rdfs:subClassOf biolink:VariantToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:StudyResult . + owl:someValuesFrom biolink:VariantToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:AdministrativeEntity ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AdministrativeEntity . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PhysicalEssenceOrOccurrent . [] a owl:Restriction ; - rdfs:subClassOf biolink:DruggableGeneToDiseaseAssociation ; + rdfs:subClassOf biolink:ChiSquaredAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DruggableGeneToDiseaseAssociation . + owl:someValuesFrom biolink:ChiSquaredAnalysisResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:ReagentTargetedGene ; + rdfs:subClassOf biolink:PhenotypicQuality ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ReagentTargetedGene . + owl:someValuesFrom biolink:PhenotypicQuality . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneAssociation ; + rdfs:subClassOf biolink:Treatment ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneAssociation . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct . + owl:someValuesFrom biolink:Treatment . [] a owl:Restriction ; - rdfs:subClassOf biolink:Book ; + rdfs:subClassOf biolink:PathologicalAnatomicalStructure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Book . + owl:someValuesFrom biolink:PathologicalAnatomicalStructure . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ActivityAndBehavior . + rdfs:subClassOf biolink:PathologicalAnatomicalExposure ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:PathologicalAnatomicalExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneticInheritance ; + rdfs:subClassOf biolink:GeneToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneticInheritance . + owl:someValuesFrom biolink:GeneToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MacromolecularMachineToCellularComponentAssociation ; + rdfs:subClassOf biolink:PosttranslationalModification ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MacromolecularMachineToCellularComponentAssociation . + owl:someValuesFrom biolink:PosttranslationalModification . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeographicLocationAtTime ; + rdfs:subClassOf biolink:StudyPopulation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeographicLocationAtTime . + owl:someValuesFrom biolink:StudyPopulation . [] a owl:Restriction ; - rdfs:subClassOf biolink:InformationContentEntity ; + rdfs:subClassOf biolink:Event ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:InformationContentEntity . + owl:someValuesFrom biolink:Event . [] a owl:Restriction ; - rdfs:subClassOf biolink:MaterialSample ; + rdfs:subClassOf biolink:OrganismToOrganismAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MaterialSample . + owl:someValuesFrom biolink:OrganismToOrganismAssociation . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:timepoint ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:timepoint ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:time_type ; - owl:onProperty biolink:timepoint ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ExposureEvent . + rdfs:subClassOf biolink:NucleicAcidEntity ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:NucleicAcidEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonAssociation ; + rdfs:subClassOf biolink:Invertebrate ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonAssociation . + owl:someValuesFrom biolink:Invertebrate . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:sex_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:CellLine ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:PhenotypicFeature ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:CellLineToEntityAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:BiologicalProcess ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BiologicalProcess . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Article ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Article . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:allValuesFrom biolink:BiologicalSex ; + owl:onProperty biolink:sex_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_direction_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualified_predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ] ; + owl:onProperty biolink:sex_qualifier ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToFeatureOrDiseaseQualifiersMixin . + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:CellularComponent ; + rdfs:subClassOf biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellularComponent . + owl:someValuesFrom biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssenceOrOccurrent . + rdfs:subClassOf biolink:BehavioralFeature ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:BehavioralFeature . [] a owl:Restriction ; - rdfs:subClassOf biolink:Vertebrate ; + rdfs:subClassOf biolink:EnvironmentalFoodContaminant ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Vertebrate . + owl:someValuesFrom biolink:EnvironmentalFoodContaminant . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalGeneInteractionAssociation ; + rdfs:subClassOf biolink:BiologicalProcess ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalGeneInteractionAssociation . + owl:someValuesFrom biolink:BiologicalProcess . [] a owl:Restriction ; - rdfs:subClassOf biolink:DatasetDistribution ; + rdfs:subClassOf biolink:GeneToPathwayAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DatasetDistribution . + owl:someValuesFrom biolink:GeneToPathwayAssociation . diff --git a/project/protobuf/biolink_model.proto b/project/protobuf/biolink_model.proto index f564839c8..19679c440 100644 --- a/project/protobuf/biolink_model.proto +++ b/project/protobuf/biolink_model.proto @@ -1853,6 +1853,50 @@ message Disease repeated organismTaxon inTaxon = 0 labelType inTaxonLabel = 0 } +// A statistical association between a disease and a chemical entity where the chemical entity has a therapeutic or adverse effect on the disease progression, symptoms or outcomes in a patient, cell line, or any model system. +message DiseaseAssociatedWithResponseToChemicalEntityAssociation + { + string id = 0 + iriType iri = 0 + labelType name = 0 + narrativeText description = 0 + repeated attribute hasAttribute = 0 + boolean deprecated = 0 + boolean negated = 0 + string qualifier = 0 + repeated ontologyClass qualifiers = 0 + repeated publication publications = 0 + repeated evidenceType hasEvidence = 0 + string knowledgeSource = 0 + string primaryKnowledgeSource = 0 + repeated string aggregatorKnowledgeSource = 0 + knowledgeLevelEnum knowledgeLevel = 0 + agentTypeEnum agentType = 0 + timeType timepoint = 0 + string originalSubject = 0 + uriorcurie originalPredicate = 0 + string originalObject = 0 + ontologyClass subjectCategory = 0 + ontologyClass objectCategory = 0 + repeated string subjectClosure = 0 + repeated string objectClosure = 0 + repeated ontologyClass subjectCategoryClosure = 0 + repeated ontologyClass objectCategoryClosure = 0 + string subjectNamespace = 0 + string objectNamespace = 0 + repeated string subjectLabelClosure = 0 + repeated string objectLabelClosure = 0 + repeated retrievalSource retrievalSourceIds = 0 + float pValue = 0 + float adjustedPValue = 0 + repeated string type = 0 + repeated uriorcurie category = 0 + responseEnum responseContextQualifier = 0 + responseTargetEnum responseTargetContextQualifier = 0 + disease subject = 0 + chemicalEntity object = 0 + predicateType predicate = 0 + } // Either one of a disease or an individual phenotypic feature. Some knowledge resources such as Monarch treat these as distinct, others such as MESH conflate. Please see definitions of phenotypic feature and disease in this model for their independent descriptions. This class is helpful to enforce domains and ranges that may involve either a disease or a phenotypic feature. message DiseaseOrPhenotypicFeature { diff --git a/project/shacl/biolink_model.shacl.ttl b/project/shacl/biolink_model.shacl.ttl index 4b5e729cc..2216febdd 100644 --- a/project/shacl/biolink_model.shacl.ttl +++ b/project/shacl/biolink_model.shacl.ttl @@ -11,71 +11,77 @@ biolink:AccessibleDnaRegion a sh:NodeShape ; sh:closed true ; sh:description "A region (or regions) of a chromatinized genome that has been measured to be more accessible to an enzyme such as DNase-I or Tn5 Transpose" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:order 9 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], + sh:order 11 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path dct:description ], - [ sh:description "connects a genomic feature to its sequence" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 1 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:synonym ], @@ -84,10 +90,11 @@ biolink:AccessibleDnaRegion a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdf:type ] ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:AccessibleDnaRegion . biolink:ActivityAndBehavior a sh:NodeShape ; @@ -102,45 +109,73 @@ biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a sh:NodeShape ; sh:closed true ; sh:description "A relationship between two anatomical entities where the relationship is ontogenic, i.e. the two entities are related by development. A number of different relationship types can be used to specify the precise nature of the relationship." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:class biolink:AnatomicalEntity ; sh:description "the structure at a later time" ; sh:maxCount 1 ; @@ -148,28 +183,38 @@ biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "the structure at an earlier time" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; @@ -182,86 +227,46 @@ biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 16 ; sh:path biolink:original_object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 34 ; + sh:path rdfs:label ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; sh:order 32 ; sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "the structure at an earlier time" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -269,54 +274,61 @@ biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a sh:NodeShape ; sh:order 23 ; sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], + sh:order 28 ; + sh:path biolink:p_value ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:object_category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a point in time" ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ] ; + sh:order 14 ; + sh:path biolink:original_subject ] ; sh:targetClass biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation . biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation a sh:NodeShape ; @@ -325,220 +337,225 @@ biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation a sh:NodeShape ; sh:description "A relationship between two anatomical entities where the relationship is mereological, i.e the two entities are related by parthood. This includes relationships between cellular components and cells, between cells and tissues, tissues and whole organisms" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 23 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "the whole" ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 35 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 19 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "the whole" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:object_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "the part" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:description "a point in time" ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:timepoint ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "the part" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 24 ; sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ] ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation . biolink:Bacterium a sh:NodeShape ; @@ -546,78 +563,84 @@ biolink:Bacterium a sh:NodeShape ; sh:closed true ; sh:description "A member of a group of unicellular microorganisms lacking a nuclear membrane, that reproduce by binary fission and are often motile." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + sh:property [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 6 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:category ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ] ; + sh:order 10 ; + sh:path rdfs:label ] ; sh:targetClass biolink:Bacterium . biolink:BehaviorToBehavioralFeatureAssociation a sh:NodeShape ; @@ -625,30 +648,31 @@ biolink:BehaviorToBehavioralFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between an mixture behavior and a behavioral feature manifested by the individual exhibited or has exhibited the behavior." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 46 ; - sh:path biolink:object_direction_qualifier ], + sh:nodeKind sh:Literal ; + sh:order 36 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Behavior ; - sh:description "behavior that is the subject of the association" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 32 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:qualifier ], + sh:order 35 ; + sh:path rdfs:label ], + [ sh:class biolink:BehavioralFeature ; + sh:description "behavioral feature that is the object of the association" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; @@ -656,67 +680,51 @@ biolink:BehaviorToBehavioralFeatureAssociation a sh:NodeShape ; sh:order 29 ; sh:path biolink:p_value ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdf:type ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:has_percentage ], - [ sh:description "a point in time" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:timepoint ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:subject_category ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:knowledge_level ], + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 37 ; + sh:path biolink:has_attribute ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:sex_qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path biolink:has_count ], + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; @@ -724,43 +732,24 @@ biolink:BehaviorToBehavioralFeatureAssociation a sh:NodeShape ; sh:order 45 ; sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path biolink:has_quotient ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path rdfs:label ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 31 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path biolink:has_total ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], + sh:order 16 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; @@ -768,94 +757,96 @@ biolink:BehaviorToBehavioralFeatureAssociation a sh:NodeShape ; sh:order 4 ; sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:subject_closure ], + sh:order 47 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:class biolink:BehavioralFeature ; - sh:description "behavioral feature that is the object of the association" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:order 43 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path dct:description ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:Behavior ; + sh:description "behavior that is the subject of the association" ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 48 ; - sh:path biolink:frequency_qualifier ], + sh:order 21 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 47 ; - sh:path biolink:qualified_predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 42 ; + sh:path biolink:has_percentage ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:deprecated ], + sh:order 15 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 34 ; + sh:path rdf:type ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 46 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -869,40 +860,77 @@ biolink:BehaviorToBehavioralFeatureAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 13 ; sh:path biolink:agent_type ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 39 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 38 ; + sh:path biolink:deprecated ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 48 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 17 ; sh:path biolink:original_object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_predicate ], + sh:order 41 ; + sh:path biolink:has_quotient ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; sh:order 33 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:object_namespace ] ; + sh:order 40 ; + sh:path biolink:has_total ] ; sh:targetClass biolink:BehaviorToBehavioralFeatureAssociation . biolink:BehavioralExposure a sh:NodeShape ; @@ -910,53 +938,11 @@ biolink:BehavioralExposure a sh:NodeShape ; sh:closed true ; sh:description "A behavioral exposure is a factor relating to behavior impacting an individual." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:synonym ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; @@ -967,21 +953,29 @@ biolink:BehavioralExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:category ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNodeOrIRI ; sh:order 3 ; sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdf:type ], + sh:order 13 ; + sh:path dct:description ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -989,12 +983,52 @@ biolink:BehavioralExposure a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; - sh:path biolink:deprecated ] ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:category ] ; sh:targetClass biolink:BehavioralExposure . biolink:BehavioralOutcome a sh:NodeShape ; @@ -1008,79 +1042,66 @@ biolink:BioticExposure a sh:NodeShape ; sh:closed true ; sh:description "An external biotic exposure is an intake of (sometimes pathological) biological organisms (including viruses)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:full_name ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path rdfs:label ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:synonym ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:category ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:timepoint ], + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -1088,11 +1109,30 @@ biolink:BioticExposure a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:xref ] ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:BioticExposure . biolink:Book a sh:NodeShape ; @@ -1101,37 +1141,37 @@ biolink:Book a sh:NodeShape ; sh:description "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:summary ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 12 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:pages ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 15 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:keywords ], [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:full_name ], + sh:order 11 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "Books should have industry-standard identifier such as from ISBN." ; sh:maxCount 1 ; @@ -1140,35 +1180,61 @@ biolink:Book a sh:NodeShape ; sh:order 14 ; sh:path biolink:id ], [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:order 16 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path rdfs:label ], + sh:order 2 ; + sh:path biolink:summary ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:keywords ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:format ], [ sh:datatype xsd:string ; + sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:rights ], - [ sh:description "a human-readable description of an entity" ; + sh:order 18 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 21 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 19 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:provided_by ], + sh:order 10 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; @@ -1179,183 +1245,167 @@ biolink:Book a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:authors ], - [ sh:datatype xsd:string ; - sh:description "Should generally be set to an ontology class defined term for 'book'." ; - sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path rdf:type ], [ sh:datatype xsd:anyURI ; sh:description "mesh terms tagging a publication" ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:mesh_terms ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Should generally be set to an ontology class defined term for 'book'." ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:iri ], + sh:order 17 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; - sh:path dct:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:pages ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:creation_date ] ; + sh:path dct:type ] ; sh:targetClass biolink:Book . biolink:BookChapter a sh:NodeShape ; rdfs:subClassOf biolink:Publication ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "The enclosing parent book containing the chapter should have industry-standard identifier from ISBN." ; + sh:property [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:published_in ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:order 15 ; + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:creation_date ], + sh:order 17 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 12 ; + sh:path biolink:format ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:authors ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:full_name ], + sh:order 24 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:anyURI ; sh:description "mesh terms tagging a publication" ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:mesh_terms ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:synonym ], + sh:order 18 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; + sh:description "chapter of a book" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:summary ], + sh:order 2 ; + sh:path biolink:chapter ], [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:license ], + sh:order 22 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; - sh:minCount 1 ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path dct:type ], + sh:order 16 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; + sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:format ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 21 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:iri ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:authors ], + sh:order 10 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:pages ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:keywords ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:volume ], [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:category ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + sh:order 13 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 22 ; - sh:path dct:description ], + sh:order 5 ; + sh:path biolink:summary ], [ sh:datatype xsd:string ; - sh:description "chapter of a book" ; + sh:description "keywords tagging a publication" ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:keywords ], + [ sh:datatype xsd:anyURI ; + sh:description "The enclosing parent book containing the chapter should have industry-standard identifier from ISBN." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:chapter ], + sh:order 0 ; + sh:path biolink:published_in ], [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; - sh:maxCount 1 ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:id ], + sh:order 9 ; + sh:path dct:type ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:provided_by ], + sh:order 1 ; + sh:path biolink:volume ], [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:deprecated ] ; + sh:order 19 ; + sh:path biolink:category ] ; sh:targetClass biolink:BookChapter . biolink:CaseToEntityAssociationMixin a sh:NodeShape ; @@ -1376,7 +1426,8 @@ biolink:CaseToEntityAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; @@ -1390,169 +1441,155 @@ biolink:CaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:description "An association between a case (e.g. individual patient) and a phenotypic feature in which the individual has or has had the phenotype." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 43 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:sex_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:class biolink:Case ; - sh:description "the case (e.g. patient) that has the property" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:nodeKind sh:Literal ; + sh:order 47 ; + sh:path biolink:qualified_predicate ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 12 ; sh:path biolink:knowledge_level ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 42 ; + sh:path biolink:has_percentage ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 46 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], + sh:order 4 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 21 ; sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 45 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 36 ; + sh:path dct:description ], + [ sh:class biolink:Case ; + sh:description "the case (e.g. patient) that has the property" ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path biolink:has_total ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "a human-readable description of an entity" ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 37 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path dct:description ], + sh:order 32 ; + sh:path biolink:iri ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 30 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 46 ; - sh:path biolink:object_direction_qualifier ], + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 47 ; - sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 45 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:adjusted_p_value ], + sh:order 25 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], + sh:order 27 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 3 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 40 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -1560,99 +1597,79 @@ biolink:CaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 31 ; sh:path biolink:id ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:p_value ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 39 ; + sh:path biolink:has_count ], [ sh:datatype xsd:double ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 41 ; sh:path biolink:has_quotient ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:has_percentage ], + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 35 ; + sh:path rdfs:label ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:iri ], + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_label_closure ], [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:subject_closure ], + sh:order 33 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 48 ; - sh:path biolink:frequency_qualifier ], + sh:order 34 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path rdfs:label ], + sh:order 5 ; + sh:path biolink:qualifier ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -1660,69 +1677,83 @@ biolink:CaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 13 ; sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:PhenotypicFeature ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path rdf:object ] ; - sh:targetClass biolink:CaseToPhenotypicFeatureAssociation . - -biolink:CausalGeneToDiseaseAssociation a sh:NodeShape ; - rdfs:subClassOf biolink:GeneToDiseaseAssociation ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; + sh:path rdf:object ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 38 ; + sh:path biolink:deprecated ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 48 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 24 ; + sh:order 22 ; sh:path biolink:subject_category_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:iri ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 44 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:integer ; + sh:order 29 ; + sh:path biolink:p_value ] ; + sh:targetClass biolink:CaseToPhenotypicFeatureAssociation . + +biolink:CausalGeneToDiseaseAssociation a sh:NodeShape ; + rdfs:subClassOf biolink:GeneToDiseaseAssociation ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 41 ; sh:path biolink:has_count ], - [ sh:datatype xsd:double ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 27 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:has_total ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 18 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; @@ -1730,52 +1761,125 @@ biolink:CausalGeneToDiseaseAssociation a sh:NodeShape ; sh:order 5 ; sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_subject ], + sh:order 47 ; + sh:path biolink:qualified_predicate ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:order 16 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:object_label_closure ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "a human-readable description of an entity" ; + sh:order 15 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path dct:description ], + sh:order 6 ; + sh:path biolink:negated ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 42 ; + sh:path biolink:has_total ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 44 ; sh:path biolink:has_percentage ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; sh:order 36 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 46 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 19 ; + sh:path biolink:original_object ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 39 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 40 ; sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -1783,96 +1887,61 @@ biolink:CausalGeneToDiseaseAssociation a sh:NodeShape ; sh:order 26 ; sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 30 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 46 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 22 ; - sh:path biolink:subject_closure ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:has_attribute ], + sh:order 48 ; + sh:path biolink:frequency_qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 45 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 25 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 35 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 47 ; - sh:path biolink:qualified_predicate ], + sh:order 34 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "gene in which variation is shown to cause the disease." ; sh:maxCount 1 ; @@ -1881,41 +1950,16 @@ biolink:CausalGeneToDiseaseAssociation a sh:NodeShape ; sh:order 0 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:id ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path biolink:category ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 48 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 22 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:negated ], + sh:order 17 ; + sh:path biolink:original_subject ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -1923,17 +1967,34 @@ biolink:CausalGeneToDiseaseAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 14 ; sh:path biolink:knowledge_level ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 43 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 31 ; sh:path biolink:p_value ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:object_label_closure ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 45 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; @@ -1945,38 +2006,19 @@ biolink:CausalGeneToDiseaseAssociation a sh:NodeShape ; sh:order 28 ; sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_namespace ] ; + sh:order 38 ; + sh:path dct:description ] ; sh:targetClass biolink:CausalGeneToDiseaseAssociation . biolink:Cell a sh:NodeShape ; rdfs:subClassOf biolink:AnatomicalEntity ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; @@ -1986,42 +2028,67 @@ biolink:Cell a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:id ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; @@ -2035,21 +2102,11 @@ biolink:CellLineAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -2057,12 +2114,6 @@ biolink:CellLineAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:knowledge_level ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], [ sh:class biolink:CellLine ; sh:description "A cell line derived from an organismal entity with a disease state that is used as a model of that disease." ; sh:maxCount 1 ; @@ -2070,16 +2121,34 @@ biolink:CellLineAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; @@ -2087,69 +2156,94 @@ biolink:CellLineAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:order 14 ; sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:description "a point in time" ; + sh:order 38 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 31 ; + sh:path biolink:iri ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_direction_qualifier ], + sh:order 30 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_direction_qualifier ], + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -2157,151 +2251,130 @@ biolink:CellLineAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 12 ; sh:path biolink:agent_type ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "The relationship to the disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 43 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 16 ; sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:order 40 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:description "The relationship to the disease" ; + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 42 ; sh:path biolink:qualified_predicate ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:frequency_qualifier ], + sh:order 41 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], + sh:order 34 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:class biolink:Disease ; - sh:description "disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ] ; + sh:order 20 ; + sh:path biolink:object_closure ] ; sh:targetClass biolink:CellLineAsAModelOfDiseaseAssociation . biolink:CellLineToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An relationship between a cell line and another entity" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:CellLine ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:property [ sh:class biolink:CellLine ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -2316,56 +2389,52 @@ biolink:ChemicalAffectsGeneAssociation a sh:NodeShape ; sh:closed true ; sh:description "Describes an effect that a chemical has on a gene or gene product (e.g. an impact of on its abundance, activity,localization, processing, expression, etc.)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; - sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:property [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:object_part_qualifier ], + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 40 ; + sh:path biolink:subject_label_closure ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 45 ; - sh:path biolink:id ], + sh:order 26 ; + sh:path biolink:knowledge_level ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 42 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:qualified_predicate ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 38 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 16 ; sh:path rdf:predicate ], - [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:object_form_or_variant_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OrganismTaxon ; - sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:species_context_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path biolink:subject_label_closure ], - [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_form_or_variant_qualifier ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -2373,30 +2442,24 @@ biolink:ChemicalAffectsGeneAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNodeOrIRI ; sh:order 17 ; sh:path rdf:object ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:anatomical_context_qualifier ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path biolink:object_closure ], + sh:order 49 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:qualifier ], + sh:order 46 ; + sh:path biolink:iri ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:original_predicate ], [ sh:class biolink:ChemicalEntity ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -2404,84 +2467,38 @@ biolink:ChemicalAffectsGeneAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path rdf:subject ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 50 ; - sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:original_object ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 46 ; - sh:path biolink:iri ], - [ sh:description "a point in time" ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 13 ; + sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 44 ; - sh:path biolink:adjusted_p_value ], + sh:order 18 ; + sh:path biolink:negated ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; sh:order 47 ; sh:path biolink:category ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 48 ; - sh:path rdf:type ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 6 ; + sh:path biolink:object_form_or_variant_qualifier ], + [ sh:class biolink:AnatomicalEntity ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 4 ; + sh:path biolink:subject_context_qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:qualifiers ], + sh:order 51 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; @@ -2493,76 +2510,146 @@ biolink:ChemicalAffectsGeneAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 52 ; sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:object_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:publications ], - [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; - sh:in ( "metabolite" ) ; + sh:nodeKind sh:Literal ; + sh:order 44 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:subject_derivative_qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 42 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 51 ; - sh:path biolink:has_attribute ], + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 39 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 24 ; sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path biolink:subject_closure ], [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:subject_part_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:object_category ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 43 ; sh:path biolink:p_value ], + [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; + sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:causal_mechanism_qualifier ], + [ sh:class biolink:AnatomicalEntity ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:object_context_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:subject_category_closure ], + [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; + sh:in ( "metabolite" ) ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:subject_derivative_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path biolink:object_label_closure ], + sh:order 48 ; + sh:path rdf:type ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 50 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 29 ; sh:path biolink:original_subject ], - [ sh:class biolink:AnatomicalEntity ; + [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:subject_form_or_variant_qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:has_evidence ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:subject_context_qualifier ], + sh:order 21 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 41 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 23 ; sh:path biolink:knowledge_source ], - [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; - sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:causal_mechanism_qualifier ], + sh:order 8 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:object_part_qualifier ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -2570,248 +2657,187 @@ biolink:ChemicalAffectsGeneAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 27 ; sh:path biolink:agent_type ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 49 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:class biolink:AnatomicalEntity ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:negated ], + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:anatomical_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:AnatomicalEntity ; + sh:order 19 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OrganismTaxon ; + sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:object_context_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:object_direction_qualifier ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 14 ; + sh:path biolink:species_context_qualifier ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:original_predicate ], + sh:order 45 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:subject_namespace ] ; + sh:order 35 ; + sh:path biolink:object_closure ] ; sh:targetClass biolink:ChemicalAffectsGeneAssociation . biolink:ChemicalEntityAssessesNamedThingAssociation a sh:NodeShape ; rdfs:subClassOf biolink:Association ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:property [ sh:class biolink:ChemicalEntity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 34 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 25 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "a human-readable description of an entity" ; + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 35 ; sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:class biolink:ChemicalEntity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_object ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:iri ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; sh:order 32 ; sh:path biolink:category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], + sh:order 30 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -2819,17 +2845,74 @@ biolink:ChemicalEntityAssessesNamedThingAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:knowledge_level ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ] ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:object_closure ] ; sh:targetClass biolink:ChemicalEntityAssessesNamedThingAssociation . biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape ; @@ -2837,22 +2920,55 @@ biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape sh:closed true ; sh:description "A regulatory relationship between two genes" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:p_value ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 38 ; + sh:path biolink:deprecated ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -2860,58 +2976,50 @@ biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape sh:order 24 ; sh:path biolink:subject_namespace ], [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path rdfs:label ], + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 3 ; + sh:path rdf:object ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:object_category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 26 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdf:type ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:id ], + sh:order 21 ; + sh:path biolink:object_closure ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -2919,73 +3027,40 @@ biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape sh:minCount 1 ; sh:order 13 ; sh:path biolink:agent_type ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:adjusted_p_value ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], + sh:order 32 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 17 ; sh:path biolink:original_object ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 33 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:p_value ], + sh:order 5 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:subject_closure ], + sh:order 34 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:negated ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -2993,70 +3068,83 @@ biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape sh:minCount 1 ; sh:order 12 ; sh:path biolink:knowledge_level ], - [ sh:description "the direction is always from regulator to regulated" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path rdf:predicate ], + sh:order 25 ; + sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 1 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:deprecated ], + sh:order 27 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 31 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "the direction is always from regulator to regulated" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:iri ], + sh:order 9 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 36 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 37 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:negated ] ; + sh:order 35 ; + sh:path rdfs:label ] ; sh:targetClass biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation . biolink:ChemicalEntityOrProteinOrPolypeptide a sh:NodeShape ; @@ -3070,134 +3158,160 @@ biolink:ChemicalGeneInteractionAssociation a sh:NodeShape ; sh:closed true ; sh:description "describes a physical interaction between a chemical entity and a gene or gene product. Any biological or chemical effect resulting from such an interaction are out of scope, and covered by the ChemicalAffectsGeneAssociation type (e.g. impact of a chemical on the abundance, activity, structure, etc, of either participant in the interaction)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:subject_category ], - [ sh:class biolink:AnatomicalEntity ; - sh:maxCount 1 ; + sh:property [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:object_context_qualifier ], + sh:order 35 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:adjusted_p_value ], - [ sh:description "a human-readable description of an entity" ; + sh:order 22 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path dct:description ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 20 ; - sh:path biolink:agent_type ], + sh:order 45 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 24 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:qualifiers ], + sh:order 9 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 28 ; sh:path biolink:object_closure ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:anatomical_context_qualifier ], + sh:order 25 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 29 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 30 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 22 ; - sh:path biolink:original_subject ], + sh:order 36 ; + sh:path biolink:p_value ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:publications ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:negated ], [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:object_part_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:original_object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 18 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:predicate ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 41 ; + sh:path rdf:type ], + [ sh:class biolink:AnatomicalEntity ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 3 ; + sh:path biolink:subject_context_qualifier ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 20 ; + sh:path biolink:agent_type ], + [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; + sh:in ( "metabolite" ) ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:subject_derivative_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:negated ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 33 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 10 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path biolink:p_value ], + sh:order 31 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 42 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 38 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 17 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; sh:order 40 ; sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 45 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:object_category_closure ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -3205,127 +3319,106 @@ biolink:ChemicalGeneInteractionAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 19 ; sh:path biolink:knowledge_level ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 29 ; + sh:path biolink:subject_category_closure ], [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:object_form_or_variant_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:AnatomicalEntity ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path biolink:iri ], + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:anatomical_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 27 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path rdfs:label ], + sh:order 21 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 43 ; + sh:path dct:description ], + [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 10 ; - sh:path rdf:object ], + sh:order 0 ; + sh:path biolink:subject_form_or_variant_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:subject_namespace ], + sh:order 12 ; + sh:path biolink:qualifier ], + [ sh:class biolink:AnatomicalEntity ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:object_context_qualifier ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:subject_part_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a point in time" ; + sh:order 39 ; + sh:path biolink:iri ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 23 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:publications ], + sh:order 15 ; + sh:path biolink:has_evidence ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 44 ; sh:path biolink:has_attribute ], - [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; - sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_part_qualifier ], - [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_form_or_variant_qualifier ], - [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; - sh:in ( "metabolite" ) ; + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:subject_derivative_qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:object_category ], + sh:order 37 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:id ], + sh:order 32 ; + sh:path biolink:object_namespace ], [ sh:class biolink:ChemicalEntity ; sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 8 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:AnatomicalEntity ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:subject_context_qualifier ] ; + sh:path rdf:subject ] ; sh:targetClass biolink:ChemicalGeneInteractionAssociation . biolink:ChemicalOrDrugOrTreatment a sh:NodeShape ; @@ -3339,85 +3432,87 @@ biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation sh:description "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary, typically (but not always) undesirable effect." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], + sh:order 4 ; + sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:p_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "a human-readable description of an entity" ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path dct:description ], - [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; - sh:description "the chemical entity or entity that is an interactor" ; + sh:order 35 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:anyURI ; sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 16 ; sh:path biolink:original_predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:agent_type ], - [ sh:description "a point in time" ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:description "" ; + sh:in ( "life_threatening_adverse_event" "serious_adverse_event" "suspected_adverse_reaction" "unexpected_adverse_event" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:timepoint ], + sh:order 3 ; + sh:path biolink:FDA_adverse_event_level ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -3431,133 +3526,136 @@ biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation sh:minCount 1 ; sh:order 12 ; sh:path biolink:knowledge_level ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "the chemical entity or entity that is an interactor" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:adjusted_p_value ], + sh:order 31 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 17 ; sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:category ], + sh:order 26 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:original_subject ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path rdfs:label ], + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:adjusted_p_value ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 37 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 36 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:subject_namespace ], + sh:order 32 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:description "" ; - sh:in ( "life_threatening_adverse_event" "serious_adverse_event" "suspected_adverse_reaction" "unexpected_adverse_event" ) ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:FDA_adverse_event_level ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ] ; + sh:path rdf:predicate ] ; sh:targetClass biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation . biolink:ChemicalToChemicalDerivationAssociation a sh:NodeShape ; @@ -3565,95 +3663,25 @@ biolink:ChemicalToChemicalDerivationAssociation a sh:NodeShape ; sh:closed true ; sh:description "A causal relationship between two chemical entities, where the subject represents the upstream entity and the object represents the downstream. For any such association there is an implicit reaction: IF R has-input C1 AND R has-output C2 AND R enabled-by P AND R type Reaction THEN C1 derives-into C2 catalyst qualifier P" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 38 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:p_value ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the upstream chemical entity" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path dct:description ], + sh:order 5 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:adjusted_p_value ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path rdfs:label ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -3661,38 +3689,73 @@ biolink:ChemicalToChemicalDerivationAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 13 ; sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:object_category ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], + sh:order 7 ; + sh:path biolink:publications ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_evidence ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:p_value ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:object_closure ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:qualifier ], + sh:order 15 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -3700,6 +3763,27 @@ biolink:ChemicalToChemicalDerivationAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 31 ; sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "this connects the derivation edge to the chemical entity that catalyzes the reaction that causes the subject chemical to transform into the object chemical." ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 0 ; + sh:path biolink:catalyst_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 21 ; + sh:path biolink:object_closure ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -3708,211 +3792,143 @@ biolink:ChemicalToChemicalDerivationAssociation a sh:NodeShape ; sh:order 12 ; sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the downstream chemical entity" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], + sh:order 32 ; + sh:path biolink:iri ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 28 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 24 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 37 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:ChemicalEntity ; + sh:description "the upstream chemical entity" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "this connects the derivation edge to the chemical entity that catalyzes the reaction that causes the subject chemical to transform into the object chemical." ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 0 ; - sh:path biolink:catalyst_qualifier ], + sh:order 1 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_predicate ], + sh:order 36 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ] ; - sh:targetClass biolink:ChemicalToChemicalDerivationAssociation . - -biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; - rdfs:subClassOf biolink:Association ; - sh:closed true ; - sh:description "An interaction between a chemical entity and a phenotype or disease, where the presence of the chemical gives rise to or exacerbates the phenotype." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; + sh:order 35 ; sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; - sh:description "the chemical entity or entity that is an interactor" ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 27 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:class biolink:ChemicalEntity ; + sh:description "the downstream chemical entity" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 3 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ] ; + sh:targetClass biolink:ChemicalToChemicalDerivationAssociation . + +biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; + rdfs:subClassOf biolink:Association ; + sh:closed true ; + sh:description "An interaction between a chemical entity and a phenotype or disease, where the presence of the chemical gives rise to or exacerbates the phenotype." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], + sh:order 35 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 23 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -3920,42 +3936,89 @@ biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:order 37 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:description "a point in time" ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 30 ; + sh:path biolink:id ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "the chemical entity or entity that is an interactor" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "the disease or phenotype that is affected by the chemical" ; sh:maxCount 1 ; @@ -3963,50 +4026,95 @@ biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 33 ; + sh:path rdf:type ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:description "a human-readable description of an entity" ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 28 ; + sh:path biolink:p_value ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ] ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ] ; sh:targetClass biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation . biolink:ChemicalToEntityAssociationMixin a sh:NodeShape ; @@ -4021,7 +4129,8 @@ biolink:ChemicalToEntityAssociationMixin a sh:NodeShape ; sh:nodeKind sh:BlankNodeOrIRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; @@ -4042,91 +4151,113 @@ biolink:ChemicalToPathwayAssociation a sh:NodeShape ; sh:description "An interaction between a chemical entity and a biological process or pathway." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the chemical entity that is affecting the pathway" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], [ sh:class biolink:Pathway ; sh:description "the pathway that is affected by the chemical" ; sh:maxCount 1 ; @@ -4135,43 +4266,38 @@ biolink:ChemicalToPathwayAssociation a sh:NodeShape ; sh:order 2 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:order 31 ; + sh:path biolink:iri ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 26 ; sh:path biolink:object_label_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -4179,83 +4305,71 @@ biolink:ChemicalToPathwayAssociation a sh:NodeShape ; sh:order 18 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 19 ; sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], + sh:order 35 ; + sh:path dct:description ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 34 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:ChemicalEntity ; + sh:description "the chemical entity that is affecting the pathway" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "a point in time" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ] ; + sh:path biolink:adjusted_p_value ] ; sh:targetClass biolink:ChemicalToPathwayAssociation . biolink:ChiSquaredAnalysisResult a sh:NodeShape ; @@ -4263,89 +4377,94 @@ biolink:ChiSquaredAnalysisResult a sh:NodeShape ; sh:closed true ; sh:description "A result of a chi squared analysis." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 7 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:license ], + sh:order 13 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:rights ], + sh:order 12 ; + sh:path rdfs:label ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], + sh:order 8 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 2 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], + sh:order 0 ; + sh:path biolink:license ], [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ] ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:iri ] ; sh:targetClass biolink:ChiSquaredAnalysisResult . biolink:ClinicalFinding a sh:NodeShape ; @@ -4353,78 +4472,84 @@ biolink:ClinicalFinding a sh:NodeShape ; sh:closed true ; sh:description "this category is currently considered broad enough to tag clinical lab measurements and other biological attributes taken as 'clinical traits' with some statistical score, for example, a p value in genetic associations." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], + sh:order 8 ; + sh:path biolink:category ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:provided_by ], + [ sh:class biolink:ClinicalAttribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path rdf:type ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:class biolink:ClinicalAttribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ] ; + sh:order 7 ; + sh:path biolink:iri ] ; sh:targetClass biolink:ClinicalFinding . biolink:ClinicalMeasurement a sh:NodeShape ; @@ -4432,86 +4557,91 @@ biolink:ClinicalMeasurement a sh:NodeShape ; sh:closed true ; sh:description "A clinical measurement is a special kind of attribute which results from a laboratory observation from a subject individual or sample. Measurements can be connected to their subject by the 'has attribute' slot." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path dct:description ], - [ sh:class biolink:QuantityValue ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; sh:order 2 ; sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:deprecated ], + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; - sh:path rdfs:label ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ] ; + sh:path rdfs:label ] ; sh:targetClass biolink:ClinicalMeasurement . biolink:ClinicalModifier a sh:NodeShape ; @@ -4519,29 +4649,24 @@ biolink:ClinicalModifier a sh:NodeShape ; sh:closed true ; sh:description "Used to characterize and specify the phenotypic abnormalities defined in the phenotypic abnormality sub-ontology, with respect to severity, laterality, and other aspects" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:property [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; @@ -4552,49 +4677,59 @@ biolink:ClinicalModifier a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], + sh:order 5 ; + sh:path biolink:id ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ], + sh:order 4 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], + sh:order 7 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; @@ -4606,6 +4741,17 @@ biolink:ClinicalTrial a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 0 ; @@ -4627,27 +4773,24 @@ biolink:ClinicalTrial a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:full_name ], + sh:order 8 ; + sh:path rdfs:label ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; @@ -4658,15 +4801,12 @@ biolink:ClinicalTrial a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ] ; + sh:order 6 ; + sh:path biolink:category ] ; sh:targetClass biolink:ClinicalTrial . biolink:CodingSequence a sh:NodeShape ; @@ -4674,9 +4814,10 @@ biolink:CodingSequence a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdf:type ], + sh:order 3 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -4684,72 +4825,78 @@ biolink:CodingSequence a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:description "connects a genomic feature to its sequence" ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:has_biological_sequence ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:in_taxon_label ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdfs:label ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:xref ] ; + sh:order 11 ; + sh:path rdfs:label ] ; sh:targetClass biolink:CodingSequence . biolink:Cohort a sh:NodeShape ; @@ -4757,25 +4904,51 @@ biolink:Cohort a sh:NodeShape ; sh:closed true ; sh:description "A group of people banded together or treated as a group who share common characteristics. A cohort 'study' is a particular form of longitudinal study that samples a cohort, performing a cross-section at intervals through time." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:property [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:synonym ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -4783,22 +4956,18 @@ biolink:Cohort a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; @@ -4808,27 +4977,11 @@ biolink:Cohort a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ] ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:Cohort . biolink:CommonDataElement a sh:NodeShape ; @@ -4836,61 +4989,53 @@ biolink:CommonDataElement a sh:NodeShape ; sh:closed true ; sh:description "A Common Data Element (CDE) is a standardized, precisely defined question, paired with a set of allowable responses, used systematically across different sites, studies, or clinical trials to ensure consistent data collection. Multiple CDEs (from one or more Collections) can be curated into Forms. (https://cde.nlm.nih.gov/home)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:string ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:format ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -4898,27 +5043,40 @@ biolink:CommonDataElement a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:creation_date ] ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:xref ] ; sh:targetClass biolink:CommonDataElement . biolink:ComplexChemicalExposure a sh:NodeShape ; @@ -4927,73 +5085,51 @@ biolink:ComplexChemicalExposure a sh:NodeShape ; sh:description "A complex chemical exposure is an intake of a chemical mixture (e.g. gasoline), other than a drug." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -5001,11 +5137,38 @@ biolink:ComplexChemicalExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; - sh:path biolink:iri ] ; + sh:path biolink:iri ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:ComplexChemicalExposure . biolink:ComplexMolecularMixture a sh:NodeShape ; @@ -5013,115 +5176,120 @@ biolink:ComplexMolecularMixture a sh:NodeShape ; sh:closed true ; sh:description "A complex molecular mixture is a chemical mixture composed of two or more molecular entities with unknown concentration and stoichiometry." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:property [ sh:datatype xsd:string ; + sh:description "" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], + sh:order 4 ; + sh:path biolink:trade_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:max_tolerated_dose ], + sh:order 0 ; + sh:path biolink:is_supplement ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 18 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:is_toxic ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:provided_by ], + sh:order 10 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; - sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ], + sh:order 12 ; + sh:path biolink:synonym ], [ sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:drug_regulatory_status_world_wide ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:is_supplement ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:iri ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_chemical_role ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:deprecated ], + sh:order 13 ; + sh:path biolink:id ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:category ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "" ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:trade_name ], + sh:order 11 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + sh:order 9 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:max_tolerated_dose ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_chemical_role ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:synonym ] ; + sh:order 16 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 17 ; + sh:path rdfs:label ], + [ sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ] ; sh:targetClass biolink:ComplexMolecularMixture . biolink:ConceptCountAnalysisResult a sh:NodeShape ; @@ -5129,89 +5297,94 @@ biolink:ConceptCountAnalysisResult a sh:NodeShape ; sh:closed true ; sh:description "A result of a concept count analysis." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:license ], + sh:order 10 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:provided_by ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:format ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ] ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path dct:description ] ; sh:targetClass biolink:ConceptCountAnalysisResult . biolink:ConfidenceLevel a sh:NodeShape ; @@ -5220,88 +5393,93 @@ biolink:ConfidenceLevel a sh:NodeShape ; sh:description "Level of confidence in a statement" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:format ], + sh:order 9 ; + sh:path biolink:iri ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:rights ], + sh:order 2 ; + sh:path biolink:format ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:license ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:creation_date ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], + sh:order 8 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdfs:label ] ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path dct:description ] ; sh:targetClass biolink:ConfidenceLevel . biolink:ContributorAssociation a sh:NodeShape ; @@ -5310,40 +5488,37 @@ biolink:ContributorAssociation a sh:NodeShape ; sh:description "Any association between an entity (such as a publication) and various agents that contribute to its realisation" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "this field can be used to annotate special characteristics of an agent relationship, such as the fact that a given author agent of a publication is the 'corresponding author'" ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 25 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; @@ -5351,314 +5526,329 @@ biolink:ContributorAssociation a sh:NodeShape ; sh:order 3 ; sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:Agent ; + sh:description "agent helping to realise the given entity (e.g. such as a publication)" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 23 ; sh:path biolink:subject_namespace ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Agent ; - sh:description "agent helping to realise the given entity (e.g. such as a publication)" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 28 ; sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 16 ; sh:path biolink:original_object ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], + sh:nodeKind sh:Literal ; + sh:order 35 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 37 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a point in time" ; + [ sh:class biolink:OntologyClass ; + sh:description "this field can be used to annotate special characteristics of an agent relationship, such as the fact that a given author agent of a publication is the 'corresponding author'" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:class biolink:InformationContentEntity ; + sh:description "information content entity which an agent has helped realise" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:description "generally one of the predicate values 'provider', 'publisher', 'editor' or 'author'" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 32 ; + sh:path biolink:category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 36 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:InformationContentEntity ; - sh:description "information content entity which an agent has helped realise" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:id ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ] ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "generally one of the predicate values 'provider', 'publisher', 'editor' or 'author'" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ] ; sh:targetClass biolink:ContributorAssociation . biolink:CorrelatedGeneToDiseaseAssociation a sh:NodeShape ; rdfs:subClassOf biolink:GeneToDiseaseAssociation ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; + sh:property [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 36 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:timepoint ], + sh:order 11 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 23 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 18 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:qualifier ], + sh:order 19 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 21 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:negated ], + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 39 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 27 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 48 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 42 ; + sh:path biolink:has_total ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 45 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 37 ; sh:path rdfs:label ], - [ sh:class biolink:Disease ; - sh:description "disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:original_predicate ], + sh:order 31 ; + sh:path biolink:p_value ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path rdf:type ], + sh:order 26 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], + sh:order 38 ; + sh:path dct:description ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 30 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 32 ; sh:path biolink:adjusted_p_value ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 14 ; - sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:original_object ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category ], + sh:order 29 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:knowledge_source ], + sh:order 33 ; + sh:path biolink:id ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 48 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; @@ -5671,18 +5861,46 @@ biolink:CorrelatedGeneToDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 40 ; sh:path biolink:deprecated ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:has_total ], + sh:order 41 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 22 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 47 ; sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "gene in which variation is shown to correlate with the disease." ; sh:maxCount 1 ; @@ -5690,414 +5908,677 @@ biolink:CorrelatedGeneToDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNodeOrIRI ; sh:order 0 ; sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 17 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 46 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:agent_type ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:double ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 43 ; sh:path biolink:has_quotient ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 35 ; + sh:path biolink:category ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ] ; + sh:targetClass biolink:CorrelatedGeneToDiseaseAssociation . + +biolink:DatasetSummary a sh:NodeShape ; + rdfs:subClassOf biolink:InformationContentEntity ; + sh:closed true ; + sh:description "an item that holds summary level information about a dataset." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 17 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path schema1:logo ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:license ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; + sh:order 10 ; sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:source_web_page ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path rdfs:label ] ; + sh:targetClass biolink:DatasetSummary . + +biolink:DatasetVersion a sh:NodeShape ; + rdfs:subClassOf biolink:InformationContentEntity ; + sh:closed true ; + sh:description "an item that holds version level information about a dataset." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:rights ], + [ sh:class biolink:Dataset ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category ], + sh:order 0 ; + sh:path biolink:has_dataset ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:full_name ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; + sh:order 13 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_namespace ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 6 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:class biolink:DatasetDistribution ; sh:maxCount 1 ; - sh:order 45 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path dct:distribution ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; sh:order 10 ; - sh:path biolink:has_evidence ], + sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 18 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; sh:order 17 ; - sh:path biolink:original_subject ], - [ sh:description "a human-readable description of an entity" ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path dct:description ], + sh:order 15 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 46 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 1 ; + sh:path biolink:ingest_date ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:p_value ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:order 16 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:agent_type ], + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 11 ; + sh:path biolink:id ] ; + sh:targetClass biolink:DatasetVersion . + +biolink:DiagnosticAid a sh:NodeShape ; + rdfs:subClassOf biolink:NamedThing ; + sh:closed true ; + sh:description "A device or substance used to help diagnose disease or injury" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:iri ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path biolink:has_count ], + sh:order 9 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; sh:order 4 ; - sh:path biolink:object_direction_qualifier ], + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 22 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ] ; - sh:targetClass biolink:CorrelatedGeneToDiseaseAssociation . + sh:order 10 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:DiagnosticAid . -biolink:DatasetSummary a sh:NodeShape ; - rdfs:subClassOf biolink:InformationContentEntity ; +biolink:DiseaseAssociatedWithResponseToChemicalEntityAssociation a sh:NodeShape ; + rdfs:subClassOf biolink:Association ; sh:closed true ; - sh:description "an item that holds summary level information about a dataset." ; + sh:description "A statistical association between a disease and a chemical entity where the chemical entity has a therapeutic or adverse effect on the disease progression, symptoms or outcomes in a patient, cell line, or any model system." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:property [ sh:class biolink:Disease ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:subject ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category ], + [ sh:class biolink:ChemicalEntity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path rdf:object ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 12 ; + sh:order 34 ; sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 29 ; + sh:path biolink:retrieval_source_ids ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:agent_type ], + [ sh:description "a biological response target (a patient, a cohort, a model system, a cell line, a sample of biological material, etc.)" ; + sh:in ( "cohort" "cell line" "individual" "sample" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:response_target_context_qualifier ], [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:rights ], + sh:order 36 ; + sh:path rdfs:label ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], + sh:order 10 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ], + sh:order 17 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 21 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; + sh:order 32 ; sh:path biolink:id ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:qualifiers ], + [ sh:description "a biological response (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; + sh:in ( "therapeutic_response" "negative" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 0 ; + sh:path biolink:response_context_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path dct:description ], + sh:order 27 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:format ], + sh:order 26 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path schema1:logo ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 16 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path rdfs:label ], + sh:order 39 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; + sh:order 22 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:license ], + sh:order 31 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:source_web_page ] ; - sh:targetClass biolink:DatasetSummary . - -biolink:DatasetVersion a sh:NodeShape ; - rdfs:subClassOf biolink:InformationContentEntity ; - sh:closed true ; - sh:description "an item that holds version level information about a dataset." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; + sh:order 18 ; + sh:path biolink:original_object ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:rights ], + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:ingest_date ], - [ sh:class biolink:DatasetDistribution ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path dct:distribution ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; + sh:order 33 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path rdf:type ], - [ sh:class biolink:Dataset ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_dataset ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:has_attribute ], + sh:order 23 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:format ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 28 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:xref ], + sh:order 35 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:provided_by ], + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 38 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:category ] ; - sh:targetClass biolink:DatasetVersion . + sh:order 37 ; + sh:path dct:description ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_evidence ] ; + sh:targetClass biolink:DiseaseAssociatedWithResponseToChemicalEntityAssociation . -biolink:DiagnosticAid a sh:NodeShape ; - rdfs:subClassOf biolink:NamedThing ; +biolink:DiseaseOrPhenotypicFeatureExposure a sh:NodeShape ; + rdfs:subClassOf biolink:Attribute ; sh:closed true ; - sh:description "A device or substance used to help diagnose disease or injury" ; + sh:description "A disease or phenotypic feature state, when viewed as an exposure, represents an precondition, leading to or influencing an outcome, e.g. HIV predisposing an individual to infections; a relative deficiency of skin pigmentation predisposing an individual to skin cancer." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 10 ; + sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; + sh:order 1 ; sh:path rdfs:label ], [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:xref ], + sh:order 11 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path rdf:type ], + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ] ; - sh:targetClass biolink:DiagnosticAid . - -biolink:DiseaseOrPhenotypicFeatureExposure a sh:NodeShape ; - rdfs:subClassOf biolink:Attribute ; - sh:closed true ; - sh:description "A disease or phenotypic feature state, when viewed as an exposure, represents an precondition, leading to or influencing an outcome, e.g. HIV predisposing an individual to infections; a relative deficiency of skin pigmentation predisposing an individual to skin cancer." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], + sh:order 10 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -6105,6 +6586,12 @@ biolink:DiseaseOrPhenotypicFeatureExposure a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; @@ -6116,63 +6603,22 @@ biolink:DiseaseOrPhenotypicFeatureExposure a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:xref ], + sh:order 13 ; + sh:path dct:description ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNodeOrIRI ; sh:order 3 ; sh:path biolink:has_quantitative_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdf:type ] ; + sh:order 8 ; + sh:path biolink:xref ] ; sh:targetClass biolink:DiseaseOrPhenotypicFeatureExposure . biolink:DiseaseOrPhenotypicFeatureOutcome a sh:NodeShape ; @@ -6191,19 +6637,20 @@ biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path rdf:object ] ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin . biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a sh:NodeShape ; @@ -6211,86 +6658,194 @@ biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a sh:NodeShape sh:closed true ; sh:description "An association between either a disease or a phenotypic feature and its mode of (genetic) inheritance." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:property [ sh:class biolink:GeneticInheritance ; + sh:description "genetic inheritance associated with the specified disease or phenotypic feature." ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 29 ; sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:original_subject ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:subject_category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "disease or phenotype" ; sh:maxCount 1 ; @@ -6298,44 +6853,44 @@ biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a sh:NodeShape sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:GeneticInheritance ; - sh:description "genetic inheritance associated with the specified disease or phenotypic feature." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "a human-readable description of an entity" ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 28 ; + sh:path biolink:p_value ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 1 ; + sh:path rdf:predicate ] ; + sh:targetClass biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation . + +biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a sh:NodeShape ; + rdfs:subClassOf biolink:Association ; + sh:closed true ; + sh:description "An association between either a disease or a phenotypic feature and an anatomical entity, where the disease/feature manifests in that site." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -6343,117 +6898,60 @@ biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a sh:NodeShape sh:order 18 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 26 ; sh:path biolink:object_label_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ] ; - sh:targetClass biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation . - -biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a sh:NodeShape ; - rdfs:subClassOf biolink:Association ; - sh:closed true ; - sh:description "An association between either a disease or a phenotypic feature and an anatomical entity, where the disease/feature manifests in that site." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Publication ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:order 31 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; @@ -6461,65 +6959,58 @@ biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a sh:NodeShape ; sh:order 4 ; sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "anatomical entity in which the disease or feature is found." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 37 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -6527,133 +7018,106 @@ biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 30 ; sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], + sh:order 34 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:original_subject ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 28 ; sh:path biolink:p_value ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "anatomical entity in which the disease or feature is found." ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 25 ; - sh:path biolink:subject_label_closure ] ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ] ; sh:targetClass biolink:DiseaseOrPhenotypicFeatureToLocationAssociation . biolink:DiseaseToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; + sh:property [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; @@ -6666,13 +7130,7 @@ biolink:DiseaseToEntityAssociationMixin a sh:NodeShape ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ] ; + sh:path rdf:subject ] ; sh:targetClass biolink:DiseaseToEntityAssociationMixin . biolink:DiseaseToExposureEventAssociation a sh:NodeShape ; @@ -6680,125 +7138,159 @@ biolink:DiseaseToExposureEventAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between an exposure event and a disease." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:property [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:class biolink:Disease ; + sh:description "disease class" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 37 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 36 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:ExposureEvent ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 31 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 19 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -6811,90 +7303,61 @@ biolink:DiseaseToExposureEventAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:original_subject ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:Disease ; - sh:description "disease class" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:class biolink:ExposureEvent ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:description "a point in time" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ] ; + sh:order 8 ; + sh:path biolink:knowledge_source ] ; sh:targetClass biolink:DiseaseToExposureEventAssociation . biolink:DiseaseToPhenotypicFeatureAssociation a sh:NodeShape ; @@ -6903,66 +7366,74 @@ biolink:DiseaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:description "An association between a disease and a phenotypic feature in which the phenotypic feature is associated with the disease in some way." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_evidence ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 24 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:object_label_closure ], + sh:order 2 ; + sh:path biolink:has_total ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:sex_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:object_category ], + sh:order 33 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:anyURI ; sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 21 ; sh:path biolink:original_predicate ], + [ sh:class biolink:Disease ; + sh:description "disease class" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 44 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:publications ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:negated ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path biolink:p_value ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 42 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; @@ -6970,49 +7441,90 @@ biolink:DiseaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:order 14 ; sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 20 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 38 ; + sh:path biolink:category ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:retrieval_source_ids ], + sh:order 7 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 48 ; + sh:path biolink:qualified_predicate ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 18 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:has_percentage ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:iri ], + sh:order 49 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:has_count ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 43 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 46 ; sh:path biolink:object_aspect_qualifier ], - [ sh:class biolink:Onset ; - sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:onset_qualifier ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:qualifier ], + sh:order 19 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -7021,92 +7533,52 @@ biolink:DiseaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:order 36 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 16 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Onset ; + sh:description "a qualifier used in a phenotypic association to state when the phenotype appears is in the subject." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 0 ; + sh:path biolink:onset_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; + sh:order 47 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 11 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:has_total ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 45 ; - sh:path biolink:subject_direction_qualifier ], + sh:order 10 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 39 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 31 ; sh:path biolink:subject_label_closure ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 17 ; - sh:path biolink:knowledge_level ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:p_value ], - [ sh:class biolink:Disease ; - sh:description "disease class" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:subject ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path rdf:object ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path rdfs:label ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 49 ; - sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 22 ; - sh:path biolink:original_object ], + sh:order 26 ; + sh:path biolink:object_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; @@ -7119,73 +7591,69 @@ biolink:DiseaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:order 25 ; sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 32 ; + sh:path biolink:object_label_closure ], [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 18 ; - sh:path biolink:agent_type ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 47 ; - sh:path biolink:object_direction_qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 17 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:negated ], + sh:order 41 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 48 ; - sh:path biolink:qualified_predicate ], - [ sh:description "a point in time" ; + sh:order 22 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:timepoint ], + sh:nodeKind sh:Literal ; + sh:order 40 ; + sh:path rdfs:label ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 35 ; sh:path biolink:adjusted_p_value ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 45 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 42 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 23 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:deprecated ], + sh:order 37 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:order 29 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 44 ; - sh:path biolink:subject_aspect_qualifier ] ; + sh:order 3 ; + sh:path biolink:has_quotient ] ; sh:targetClass biolink:DiseaseToPhenotypicFeatureAssociation . biolink:DrugLabel a sh:NodeShape ; @@ -7193,25 +7661,23 @@ biolink:DrugLabel a sh:NodeShape ; sh:closed true ; sh:description "a document accompanying a drug or its container that provides written, printed or graphic information about the drug, including drug contents, specific instructions or warnings for administration, storage and disposal instructions, etc." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:rights ], - [ sh:datatype xsd:anyURI ; - sh:description "mesh terms tagging a publication" ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:mesh_terms ], [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path rdf:type ], + sh:order 14 ; + sh:path biolink:id ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; @@ -7219,22 +7685,9 @@ biolink:DrugLabel a sh:NodeShape ; sh:order 16 ; sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:summary ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:license ], + sh:order 17 ; + sh:path rdf:type ], [ sh:class biolink:Agent ; sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; @@ -7246,68 +7699,88 @@ biolink:DrugLabel a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path dct:type ], + [ sh:datatype xsd:anyURI ; + sh:description "mesh terms tagging a publication" ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:mesh_terms ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 21 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; + sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:keywords ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 18 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; + sh:order 15 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path dct:description ], + sh:order 12 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:pages ], + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:format ], [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 19 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:keywords ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:deprecated ], + sh:order 7 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_attribute ], + sh:order 2 ; + sh:path biolink:summary ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:pages ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:iri ] ; + sh:path biolink:xref ] ; sh:targetClass biolink:DrugLabel . biolink:DrugToEntityAssociationMixin a sh:NodeShape ; @@ -7315,13 +7788,13 @@ biolink:DrugToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An interaction between a drug and another entity" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Drug ; - sh:description "the drug that is an interactor" ; + sh:property [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -7329,12 +7802,13 @@ biolink:DrugToEntityAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:Drug ; + sh:description "the drug that is an interactor" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ] ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ] ; sh:targetClass biolink:DrugToEntityAssociationMixin . biolink:DrugToGeneAssociation a sh:NodeShape ; @@ -7342,34 +7816,59 @@ biolink:DrugToGeneAssociation a sh:NodeShape ; sh:closed true ; sh:description "An interaction between a drug and a gene or gene product." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:original_subject ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the gene or gene product that is affected by the drug" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; @@ -7377,83 +7876,63 @@ biolink:DrugToGeneAssociation a sh:NodeShape ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], + sh:order 33 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 37 ; sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:description "a point in time" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 32 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the gene or gene product that is affected by the drug" ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -7461,27 +7940,31 @@ biolink:DrugToGeneAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:knowledge_level ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:Drug ; - sh:description "the drug that is an interactor" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a human-readable description of an entity" ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 35 ; @@ -7490,73 +7973,69 @@ biolink:DrugToGeneAssociation a sh:NodeShape ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Drug ; + sh:description "the drug that is an interactor" ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:object_category_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:order 18 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ] ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ] ; sh:targetClass biolink:DrugToGeneAssociation . biolink:DrugToGeneInteractionExposure a sh:NodeShape ; @@ -7565,56 +8044,58 @@ biolink:DrugToGeneInteractionExposure a sh:NodeShape ; sh:description "drug to gene interaction exposure is a drug exposure is where the interactions of the drug with specific genes are known to constitute an 'exposure' to the organism, leading to or influencing an outcome." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:id ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path rdfs:label ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:category ], + sh:order 6 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "a point in time" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:provided_by ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 1 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:synonym ], - [ sh:class biolink:Gene ; - sh:description "connects an entity with one or more gene or gene products" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_gene_or_gene_product ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path dct:description ], + sh:order 12 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -7622,131 +8103,79 @@ biolink:DrugToGeneInteractionExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_attribute_type ], - [ sh:class biolink:NamedThing ; + [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:description "a point in time" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], + sh:order 14 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path rdf:type ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:provided_by ], + [ sh:class biolink:Gene ; + sh:description "connects an entity with one or more gene or gene products" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_gene_or_gene_product ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:full_name ] ; + sh:order 16 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:DrugToGeneInteractionExposure . biolink:DruggableGeneToDiseaseAssociation a sh:NodeShape ; rdfs:subClassOf biolink:GeneToDiseaseAssociation ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path biolink:deprecated ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is correlated with the disease in a protective manner, or if the product produced by the gene can be targeted by a small molecule and this leads to a protective or improving disease state." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:has_total ], - [ sh:class biolink:Disease ; - sh:description "disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:timepoint ], + sh:order 25 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 44 ; - sh:path biolink:has_percentage ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:original_object ], + sh:order 43 ; + sh:path biolink:has_quotient ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:description "connects an association to an instance of supporting evidence" ; + sh:in ( "tclin" "tbio" "tchem" "tdark" ) ; + sh:order 10 ; + sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:object_category ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 47 ; - sh:path biolink:qualified_predicate ], + sh:order 40 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; @@ -7754,26 +8183,37 @@ biolink:DruggableGeneToDiseaseAssociation a sh:NodeShape ; sh:order 41 ; sh:path biolink:has_count ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:subject_category_closure ], + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_subject ], - [ sh:description "connects an association to an instance of supporting evidence" ; - sh:in ( "tclin" "tbio" "tchem" "tdark" ) ; - sh:order 10 ; - sh:path biolink:has_evidence ], + sh:order 37 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; @@ -7781,73 +8221,77 @@ biolink:DruggableGeneToDiseaseAssociation a sh:NodeShape ; sh:order 6 ; sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:id ], - [ sh:datatype xsd:double ; + sh:order 23 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:has_quotient ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:order 17 ; + sh:path biolink:original_subject ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 45 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:iri ], + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 28 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 48 ; - sh:path biolink:frequency_qualifier ], + sh:order 11 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], + sh:order 34 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 38 ; + sh:path dct:description ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is correlated with the disease in a protective manner, or if the product produced by the gene can be targeted by a small molecule and this leads to a protective or improving disease state." ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 29 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:sex_qualifier ], + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:adjusted_p_value ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:subject_category_closure ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -7855,32 +8299,74 @@ biolink:DruggableGeneToDiseaseAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 15 ; sh:path biolink:agent_type ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 35 ; + sh:path biolink:category ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 22 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 39 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; sh:order 36 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 22 ; - sh:path biolink:subject_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path dct:description ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 33 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:p_value ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 46 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path rdfs:label ], + sh:order 44 ; + sh:path biolink:has_percentage ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 48 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 45 ; + sh:path biolink:subject_direction_qualifier ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -7889,98 +8375,121 @@ biolink:DruggableGeneToDiseaseAssociation a sh:NodeShape ; sh:order 14 ; sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:has_attribute ], + sh:order 47 ; + sh:path biolink:qualified_predicate ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 30 ; sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:object_label_closure ], + sh:order 27 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 42 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:p_value ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ], + sh:order 26 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 18 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 46 ; - sh:path biolink:object_aspect_qualifier ] ; + sh:order 19 ; + sh:path biolink:original_object ] ; sh:targetClass biolink:DruggableGeneToDiseaseAssociation . biolink:EntityToDiseaseAssociation a sh:NodeShape ; rdfs:subClassOf biolink:Association ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path rdf:object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:negated ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_evidence ], + sh:order 8 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 25 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_predicate ], + sh:order 33 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 22 ; + sh:path biolink:object_closure ], + [ sh:description "" ; + sh:in ( "approved_for_condition" "fda_approved_for_condition" "not_approved_for_condition" "post_approval_withdrawal" "off_label_use" "not_provided" ) ; sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:clinical_approval_status ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:negated ], + sh:order 27 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 21 ; + sh:path biolink:subject_closure ], + [ sh:in ( "pre_clinical_research_phase" "clinical_trial_phase" "clinical_trial_phase_1" "clinical_trial_phase_2" "clinical_trial_phase_3" "clinical_trial_phase_4" "not_provided" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:max_research_phase ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 36 ; + sh:path rdfs:label ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path biolink:category ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -7988,75 +8497,66 @@ biolink:EntityToDiseaseAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 13 ; sh:path biolink:knowledge_level ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:timepoint ], - [ sh:description "" ; - sh:in ( "approved_for_condition" "fda_approved_for_condition" "not_approved_for_condition" "post_approval_withdrawal" "off_label_use" "not_provided" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:clinical_approval_status ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path biolink:deprecated ], + sh:order 3 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 29 ; + sh:path biolink:retrieval_source_ids ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:adjusted_p_value ], + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:agent_type ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:category ], + sh:order 39 ; + sh:path biolink:deprecated ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:subject ], + sh:order 2 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; @@ -8064,108 +8564,103 @@ biolink:EntityToDiseaseAssociation a sh:NodeShape ; sh:order 11 ; sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 29 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 10 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:qualifiers ], + sh:order 31 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:id ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 14 ; - sh:path biolink:agent_type ], + sh:order 26 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 22 ; - sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 28 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path rdfs:label ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 17 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:p_value ], - [ sh:description "a human-readable description of an entity" ; + sh:order 18 ; + sh:path biolink:original_object ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 38 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 37 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:iri ], - [ sh:in ( "pre_clinical_research_phase" "clinical_trial_phase" "clinical_trial_phase_1" "clinical_trial_phase_2" "clinical_trial_phase_3" "clinical_trial_phase_4" "not_provided" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:max_research_phase ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category_closure ], + sh:order 30 ; + sh:path biolink:p_value ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:publications ], + sh:order 6 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; sh:order 35 ; sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 32 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_subject ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 38 ; - sh:path biolink:has_attribute ] ; + sh:order 9 ; + sh:path biolink:has_evidence ] ; sh:targetClass biolink:EntityToDiseaseAssociation . biolink:EntityToDiseaseAssociationMixin a sh:NodeShape ; @@ -8173,35 +8668,11 @@ biolink:EntityToDiseaseAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "mixin class for any association whose object (target node) is a disease" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path rdf:predicate ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:property [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:object_direction_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:frequency_qualifier ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -8210,35 +8681,54 @@ biolink:EntityToDiseaseAssociationMixin a sh:NodeShape ; sh:order 8 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 4 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:object_aspect_qualifier ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualified_predicate ] ; + sh:order 7 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:subject_aspect_qualifier ] ; sh:targetClass biolink:EntityToDiseaseAssociationMixin . biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:property [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "disease or phenotype" ; sh:maxCount 1 ; sh:minCount 1 ; @@ -8251,20 +8741,21 @@ biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin a sh:NodeShape ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path rdf:subject ] ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin . biolink:EntityToExposureEventAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An association between some entity and an exposure event." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:NamedThing ; + sh:property [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; @@ -8277,14 +8768,29 @@ biolink:EntityToExposureEventAssociationMixin a sh:NodeShape ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path rdf:object ] ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:EntityToExposureEventAssociationMixin . biolink:EntityToOutcomeAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An association between some entity and an outcome" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:class biolink:Outcome ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; @@ -8296,54 +8802,38 @@ biolink:EntityToOutcomeAssociationMixin a sh:NodeShape ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:Outcome ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path rdf:object ] ; + sh:path rdf:subject ] ; sh:targetClass biolink:EntityToOutcomeAssociationMixin . biolink:EntityToPhenotypicFeatureAssociation a sh:NodeShape ; rdfs:subClassOf biolink:Association ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path dct:description ], + sh:order 11 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "" ; + sh:in ( "approved_for_condition" "fda_approved_for_condition" "not_approved_for_condition" "post_approval_withdrawal" "off_label_use" "not_provided" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:clinical_approval_status ], + [ sh:in ( "pre_clinical_research_phase" "clinical_trial_phase" "clinical_trial_phase_1" "clinical_trial_phase_2" "clinical_trial_phase_3" "clinical_trial_phase_4" "not_provided" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:max_research_phase ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; sh:order 35 ; sh:path rdf:type ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path rdf:predicate ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 14 ; - sh:path biolink:agent_type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; @@ -8355,302 +8845,297 @@ biolink:EntityToPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 27 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 34 ; + sh:path biolink:category ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 29 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:knowledge_level ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:p_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 38 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 20 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:iri ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 25 ; + sh:path biolink:subject_namespace ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a point in time" ; + sh:order 14 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 22 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category ], + sh:order 7 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:has_evidence ], - [ sh:in ( "pre_clinical_research_phase" "clinical_trial_phase" "clinical_trial_phase_1" "clinical_trial_phase_2" "clinical_trial_phase_3" "clinical_trial_phase_4" "not_provided" ) ; + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:max_research_phase ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:object_category_closure ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:order 4 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:knowledge_level ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:subject_closure ], - [ sh:description "" ; - sh:in ( "approved_for_condition" "fda_approved_for_condition" "not_approved_for_condition" "post_approval_withdrawal" "off_label_use" "not_provided" ) ; + sh:order 32 ; + sh:path biolink:id ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:clinical_approval_status ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 6 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:adjusted_p_value ], + sh:order 10 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 17 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 36 ; sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:id ], + sh:order 3 ; + sh:path rdf:predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 38 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 33 ; + sh:path biolink:iri ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 30 ; + sh:path biolink:p_value ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path biolink:deprecated ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 21 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path rdf:object ], + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 26 ; sh:path biolink:object_namespace ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 29 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 22 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 16 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_predicate ] ; + sh:order 39 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:EntityToPhenotypicFeatureAssociation . biolink:EntityToPhenotypicFeatureAssociationMixin a sh:NodeShape ; rdfs:subClassOf biolink:EntityToFeatureOrDiseaseQualifiersMixin ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:property [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 13 ; + sh:path biolink:frequency_qualifier ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], [ sh:datatype xsd:double ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:has_quotient ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:has_total ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 7 ; + sh:path biolink:has_percentage ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:has_count ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:sex_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 5 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:has_percentage ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 4 ; + sh:path biolink:has_count ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 10 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:subject_direction_qualifier ] ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:subject_aspect_qualifier ] ; sh:targetClass biolink:EntityToPhenotypicFeatureAssociationMixin . biolink:EnvironmentalFeature a sh:NodeShape ; rdfs:subClassOf biolink:PlanetaryEntity ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; @@ -8662,25 +9147,39 @@ biolink:EnvironmentalFeature a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 6 ; + sh:path biolink:category ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; @@ -8690,7 +9189,18 @@ biolink:EnvironmentalFeature a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 0 ; - sh:path biolink:provided_by ] ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:EnvironmentalFeature . biolink:EnvironmentalFoodContaminant a sh:NodeShape ; @@ -8698,11 +9208,7 @@ biolink:EnvironmentalFoodContaminant a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:synonym ], @@ -8711,144 +9217,158 @@ biolink:EnvironmentalFoodContaminant a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 1 ; - sh:path biolink:available_from ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:max_tolerated_dose ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:is_toxic ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:category ], + sh:order 6 ; + sh:path biolink:xref ], [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_chemical_role ], [ sh:datatype xsd:string ; + sh:description "" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 0 ; + sh:path biolink:trade_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 5 ; + sh:path biolink:provided_by ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 1 ; + sh:path biolink:available_from ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:max_tolerated_dose ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:id ], + sh:order 11 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:trade_name ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:boolean ; - sh:description "" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:is_toxic ] ; + sh:order 9 ; + sh:path biolink:id ] ; sh:targetClass biolink:EnvironmentalFoodContaminant . biolink:EnvironmentalProcess a sh:NodeShape ; rdfs:subClassOf biolink:PlanetaryEntity ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; + sh:property [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:category ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:xref ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 9 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; @@ -8865,7 +9385,8 @@ biolink:EpidemiologicalOutcome a sh:NodeShape ; biolink:EpigenomicEntity a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "connects a genomic feature to its sequence" ; + sh:property [ sh:datatype xsd:string ; + sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; @@ -8877,68 +9398,73 @@ biolink:Event a sh:NodeShape ; sh:closed true ; sh:description "Something that happens at a given place and time." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:synonym ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:category ] ; + sh:order 8 ; + sh:path rdfs:label ] ; sh:targetClass biolink:Event . biolink:ExonToTranscriptRelationship a sh:NodeShape ; @@ -8946,105 +9472,147 @@ biolink:ExonToTranscriptRelationship a sh:NodeShape ; sh:closed true ; sh:description "A transcript is formed from multiple exons" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Transcript ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Exon ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:negated ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:class biolink:Transcript ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 26 ; sh:path biolink:object_label_closure ], - [ sh:class biolink:Exon ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], + sh:order 28 ; + sh:path biolink:p_value ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "a point in time" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -9052,115 +9620,78 @@ biolink:ExonToTranscriptRelationship a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 30 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 35 ; sh:path dct:description ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; sh:order 33 ; sh:path rdf:type ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 34 ; sh:path rdfs:label ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 29 ; sh:path biolink:adjusted_p_value ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ] ; + sh:order 21 ; + sh:path biolink:subject_category_closure ] ; sh:targetClass biolink:ExonToTranscriptRelationship . biolink:ExposureEventToOutcomeAssociation a sh:NodeShape ; @@ -9168,123 +9699,72 @@ biolink:ExposureEventToOutcomeAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between an exposure event and an outcome." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Outcome ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 4 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 22 ; sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 36 ; sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:qualifiers ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:Outcome ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 4 ; + sh:path rdf:object ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:subject ], - [ sh:description "a constraint of time placed upon the truth value of an association. for time intervales, use temporal interval qualifier." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:temporal_context_qualifier ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 39 ; sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a point in time" ; + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:timepoint ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:population_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:subject_closure ], + sh:order 3 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 38 ; - sh:path biolink:has_attribute ], + sh:order 6 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; sh:order 35 ; sh:path rdf:type ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category ], + sh:order 18 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:population_context_qualifier ], + sh:order 10 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -9298,28 +9778,52 @@ biolink:ExposureEventToOutcomeAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 32 ; sh:path biolink:id ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path rdf:predicate ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 29 ; sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:object_label_closure ], + sh:order 27 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:knowledge_source ], + sh:order 37 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "a constraint of time placed upon the truth value of an association. for time intervales, use temporal interval qualifier." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:temporal_context_qualifier ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; @@ -9327,29 +9831,38 @@ biolink:ExposureEventToOutcomeAssociation a sh:NodeShape ; sh:order 11 ; sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:p_value ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:knowledge_level ], + sh:order 25 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:original_object ], + sh:order 33 ; + sh:path biolink:iri ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 17 ; + sh:path biolink:original_predicate ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -9357,43 +9870,67 @@ biolink:ExposureEventToOutcomeAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 14 ; sh:path biolink:agent_type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 38 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:publications ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_evidence ], + sh:order 15 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_namespace ], + sh:order 26 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 21 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; sh:order 34 ; sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:iri ] ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:subject ] ; sh:targetClass biolink:ExposureEventToOutcomeAssociation . biolink:ExposureEventToPhenotypicFeatureAssociation a sh:NodeShape ; @@ -9401,163 +9938,218 @@ biolink:ExposureEventToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "Any association between an environment and a phenotypic feature, where being in the environment influences the phenotype." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:property [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 39 ; + sh:path biolink:has_count ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 47 ; - sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 43 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path biolink:has_total ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 45 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 46 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:ExposureEvent ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 42 ; + sh:path biolink:has_percentage ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 41 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:order 17 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 45 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path dct:description ], + sh:order 13 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 32 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:category ], + sh:order 26 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 47 ; + sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path biolink:has_count ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:order 31 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], + sh:order 37 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_object ], + sh:order 34 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path rdfs:label ], + sh:order 24 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 20 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], + sh:order 15 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], [ sh:datatype ; sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 48 ; sh:path biolink:frequency_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:class biolink:ExposureEvent ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 35 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -9565,90 +10157,58 @@ biolink:ExposureEventToPhenotypicFeatureAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 12 ; sh:path biolink:knowledge_level ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:object_namespace ], + sh:order 36 ; + sh:path dct:description ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 29 ; sh:path biolink:p_value ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 46 ; - sh:path biolink:object_direction_qualifier ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:agent_type ], - [ sh:description "a point in time" ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:order 38 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:has_percentage ], + sh:order 40 ; + sh:path biolink:has_total ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; @@ -9656,29 +10216,11 @@ biolink:ExposureEventToPhenotypicFeatureAssociation a sh:NodeShape ; sh:order 3 ; sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_predicate ] ; + sh:order 5 ; + sh:path biolink:qualifier ] ; sh:targetClass biolink:ExposureEventToPhenotypicFeatureAssociation . biolink:Food a sh:NodeShape ; @@ -9686,167 +10228,202 @@ biolink:Food a sh:NodeShape ; sh:closed true ; sh:description "A substance consumed by a living organism as a source of nutrition" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:datatype xsd:string ; + sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path rdf:type ], + sh:order 0 ; + sh:path biolink:is_supplement ], [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; sh:order 3 ; sh:path biolink:routes_of_delivery ], [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:is_supplement ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:id ], + sh:order 14 ; + sh:path biolink:iri ], [ sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:drug_regulatory_status_world_wide ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path dct:description ], + sh:order 16 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "" ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:category ], + [ sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:trade_name ], + sh:order 6 ; + sh:path biolink:max_tolerated_dose ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 20 ; sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:synonym ], + sh:order 17 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 18 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:full_name ], [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_chemical_role ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:is_toxic ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:xref ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:max_tolerated_dose ], - [ sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; - sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 13 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:iri ] ; + sh:order 4 ; + sh:path biolink:trade_name ] ; sh:targetClass biolink:Food . biolink:FoodAdditive a sh:NodeShape ; rdfs:subClassOf biolink:ChemicalEntity ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:max_tolerated_dose ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 1 ; + sh:path biolink:available_from ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_chemical_role ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:iri ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:synonym ], + sh:order 11 ; + sh:path biolink:category ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 16 ; sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:trade_name ], + sh:order 9 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; @@ -9854,42 +10431,17 @@ biolink:FoodAdditive a sh:NodeShape ; sh:order 3 ; sh:path biolink:is_toxic ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:provided_by ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 1 ; - sh:path biolink:available_from ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 0 ; + sh:path biolink:trade_name ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path dct:description ] ; + sh:path biolink:full_name ] ; sh:targetClass biolink:FoodAdditive . biolink:FrequencyQuantifier a sh:NodeShape ; @@ -9897,17 +10449,17 @@ biolink:FrequencyQuantifier a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:has_total ], - [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:has_count ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:has_total ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; @@ -9926,78 +10478,84 @@ biolink:Fungus a sh:NodeShape ; sh:closed true ; sh:description "A kingdom of eukaryotic, heterotrophic organisms that live as saprobes or parasites, including mushrooms, yeasts, smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi refer to those that grow as multicellular colonies (mushrooms and molds)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:property [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:deprecated ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ] ; + sh:order 2 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:Fungus . biolink:GeneAffectsChemicalAssociation a sh:NodeShape ; @@ -10006,390 +10564,333 @@ biolink:GeneAffectsChemicalAssociation a sh:NodeShape ; sh:description "Describes an effect that a gene or gene product has on a chemical entity (e.g. an impact of on its abundance, activity, localization, processing, transport, etc.)" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 48 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 25 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:ChemicalEntity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:knowledge_source ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path rdf:object ], [ sh:class biolink:AnatomicalEntity ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:subject_context_qualifier ], + sh:order 9 ; + sh:path biolink:object_context_qualifier ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 49 ; + sh:path rdf:type ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 43 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:subject_derivative_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 37 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 46 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 50 ; - sh:path rdfs:label ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 16 ; - sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 34 ; sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 38 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path biolink:subject_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 53 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path rdf:predicate ], + sh:order 2 ; + sh:path biolink:subject_derivative_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 53 ; - sh:path biolink:deprecated ], + sh:order 20 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; + sh:order 42 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:anatomical_context_qualifier ], + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:qualified_predicate ], [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:object_form_or_variant_qualifier ], + [ sh:class biolink:OrganismTaxon ; + sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:species_context_qualifier ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 52 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:qualifiers ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 51 ; - sh:path dct:description ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 39 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 45 ; - sh:path biolink:adjusted_p_value ], + sh:order 30 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 40 ; sh:path biolink:object_namespace ], - [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; - sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:causal_mechanism_qualifier ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 49 ; - sh:path rdf:type ], + sh:order 46 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OrganismTaxon ; - sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:species_context_qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:publications ], - [ sh:class biolink:AnatomicalEntity ; + sh:order 29 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:object_context_qualifier ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:ChemicalEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 44 ; + sh:path biolink:p_value ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:knowledge_level ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path rdf:object ], - [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement)." ; - sh:in ( "metabolite" ) ; + sh:order 38 ; + sh:path biolink:object_category_closure ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:object_derivative_qualifier ], - [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; + sh:order 5 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_form_or_variant_qualifier ], + sh:order 7 ; + sh:path biolink:object_part_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 19 ; sh:path biolink:negated ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + [ sh:class biolink:AnatomicalEntity ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 28 ; - sh:path biolink:agent_type ], + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:anatomical_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:original_subject ], - [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; - sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:order 24 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:AnatomicalEntity ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_part_qualifier ], + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:subject_context_qualifier ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 44 ; - sh:path biolink:p_value ], + sh:order 45 ; + sh:path biolink:adjusted_p_value ], [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:subject_aspect_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; + sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:causal_mechanism_qualifier ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 28 ; + sh:path biolink:agent_type ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 16 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 47 ; - sh:path biolink:iri ], - [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; - sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:order 41 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:object_part_qualifier ], + sh:nodeKind sh:Literal ; + sh:order 51 ; + sh:path dct:description ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:publications ], [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:object_aspect_qualifier ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:timepoint ], + sh:order 50 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:object_label_closure ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 17 ; + sh:path rdf:predicate ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:subject_category ], + sh:order 1 ; + sh:path biolink:subject_part_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 35 ; sh:path biolink:subject_closure ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:knowledge_level ], + sh:nodeKind sh:Literal ; + sh:order 47 ; + sh:path biolink:iri ], + [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement)." ; + sh:in ( "metabolite" ) ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:object_derivative_qualifier ], + [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:subject_form_or_variant_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 36 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:qualifiers ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:original_object ] ; + sh:order 48 ; + sh:path biolink:category ] ; sh:targetClass biolink:GeneAffectsChemicalAssociation . biolink:GeneAsAModelOfDiseaseAssociation a sh:NodeShape ; rdfs:subClassOf biolink:GeneToDiseaseAssociation ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 44 ; - sh:path biolink:has_percentage ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path dct:description ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:has_quotient ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], + sh:order 18 ; + sh:path biolink:original_predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 22 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:object_label_closure ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 20 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:id ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], + sh:order 47 ; + sh:path biolink:qualified_predicate ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -10397,80 +10898,87 @@ biolink:GeneAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 14 ; sh:path biolink:knowledge_level ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:has_total ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:original_object ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 40 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:iri ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 16 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "The relationship to the disease" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:original_predicate ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:object_direction_qualifier ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:agent_type ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:p_value ], + sh:order 48 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 35 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 46 ; sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 45 ; - sh:path biolink:subject_direction_qualifier ], + sh:order 36 ; + sh:path rdf:type ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." ; sh:maxCount 1 ; @@ -10478,44 +10986,64 @@ biolink:GeneAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNodeOrIRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path rdf:type ], + sh:order 17 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 38 ; + sh:path dct:description ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 44 ; + sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:object_closure ], + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:adjusted_p_value ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:object_direction_qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], + sh:order 24 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path biolink:iri ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 41 ; sh:path biolink:has_count ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:agent_type ], + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:negated ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; @@ -10523,77 +11051,123 @@ biolink:GeneAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:order 5 ; sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_subject ], - [ sh:description "The relationship to the disease" ; + sh:order 43 ; + sh:path biolink:has_quotient ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 39 ; + sh:path biolink:has_attribute ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 45 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 19 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 22 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], + sh:order 37 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 26 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path biolink:deprecated ], + sh:order 33 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 47 ; - sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:negated ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:order 42 ; + sh:path biolink:has_total ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:description "a point in time" ; + sh:order 21 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:timepoint ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 27 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 48 ; - sh:path biolink:frequency_qualifier ] ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 30 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:p_value ] ; sh:targetClass biolink:GeneAsAModelOfDiseaseAssociation . biolink:GeneExpressionMixin a sh:NodeShape ; sh:closed false ; sh:description "Observed gene expression intensity, context (site, stage) and associated phenotypic status within which the expression occurs." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:LifeStage ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Optional quantitative value indicating degree of expression." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:quantifier_qualifier ], + [ sh:class biolink:LifeStage ; sh:description "stage during which gene or protein expression of takes place." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; @@ -10605,12 +11179,6 @@ biolink:GeneExpressionMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:phenotypic_state ], - [ sh:class biolink:OntologyClass ; - sh:description "Optional quantitative value indicating degree of expression." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:quantifier_qualifier ], [ sh:class biolink:AnatomicalEntity ; sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; sh:maxCount 1 ; @@ -10634,51 +11202,66 @@ biolink:GeneHasVariantThatContributesToDiseaseAssociation a sh:NodeShape ; rdfs:subClassOf biolink:GeneToDiseaseAssociation ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 11 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 12 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:negated ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." ; + sh:order 47 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:p_value ], + sh:order 15 ; + sh:path biolink:knowledge_level ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:qualifiers ], + sh:order 21 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:double ; + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 44 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 36 ; + sh:path biolink:category ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_closure ], + sh:order 49 ; + sh:path biolink:frequency_qualifier ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; @@ -10690,182 +11273,110 @@ biolink:GeneHasVariantThatContributesToDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 28 ; sh:path biolink:object_namespace ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:object_direction_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 48 ; - sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:subject_category_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:adjusted_p_value ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 49 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 43 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path biolink:deprecated ], + sh:order 42 ; + sh:path biolink:has_count ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:has_count ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_closure ], + sh:order 32 ; + sh:path biolink:p_value ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:publications ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 47 ; - sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:knowledge_source ], + sh:order 17 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:object_category ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 16 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:has_total ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:sex_qualifier ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:order 45 ; + sh:path biolink:has_percentage ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:knowledge_level ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 35 ; + sh:path biolink:iri ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:order 4 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 16 ; + sh:path biolink:agent_type ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:order 9 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 45 ; - sh:path biolink:has_percentage ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 27 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 46 ; - sh:path biolink:subject_direction_qualifier ], + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 18 ; sh:path biolink:original_subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:subject_form_or_variant_qualifier ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -10873,50 +11384,112 @@ biolink:GeneHasVariantThatContributesToDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 34 ; sh:path biolink:id ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 46 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:original_object ], + sh:order 39 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:subject_form_or_variant_qualifier ], + sh:order 38 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 41 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 23 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 33 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:subject_label_closure ], + sh:order 44 ; + sh:path biolink:has_quotient ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 26 ; sh:path biolink:object_category_closure ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:timepoint ], + sh:order 48 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; - sh:path biolink:primary_knowledge_source ] ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:negated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 40 ; + sh:path biolink:has_attribute ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:original_object ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 1 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:subject_label_closure ] ; sh:targetClass biolink:GeneHasVariantThatContributesToDiseaseAssociation . biolink:GeneProductIsoformMixin a sh:NodeShape ; @@ -10924,7 +11497,8 @@ biolink:GeneProductIsoformMixin a sh:NodeShape ; sh:closed false ; sh:description "This is an abstract class that can be mixed in with different kinds of gene products to indicate that the gene product is intended to represent a specific isoform rather than a canonical or reference or generic product. The designation of canonical or reference may be arbitrary, or it may represent the superclass of all isoforms." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:synonym ], @@ -10933,7 +11507,8 @@ biolink:GeneProductIsoformMixin a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + [ sh:datatype xsd:string ; + sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; @@ -10945,143 +11520,114 @@ biolink:GeneRegulatesGeneAssociation a sh:NodeShape ; sh:closed true ; sh:description "Describes a regulatory relationship between two genes or gene products." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:object_category_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 23 ; sh:path biolink:subject_closure ], - [ sh:class biolink:OrganismTaxon ; - sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:species_context_qualifier ], - [ sh:description "a point in time" ; + [ sh:description "the aspect of the object gene or gene product that is being regulated, must be a descendant of \"activity_or_abundance\"\"" ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:iri ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category ], + sh:order 31 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 40 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 6 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 12 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path biolink:category ], + sh:order 33 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:original_subject ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 8 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 4 ; - sh:path rdf:subject ], + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 29 ; sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:subject_category_closure ], + sh:order 9 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:qualified_predicate ], + sh:order 5 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path biolink:object_direction_qualifier ], + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:qualified_predicate ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:original_object ], - [ sh:description "the aspect of the object gene or gene product that is being regulated, must be a descendant of \"activity_or_abundance\"\"" ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 27 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 36 ; + sh:path biolink:category ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -11089,43 +11635,44 @@ biolink:GeneRegulatesGeneAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 16 ; sh:path biolink:agent_type ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path rdf:type ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 31 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:has_attribute ], + sh:order 26 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 32 ; sh:path biolink:p_value ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path rdfs:label ], + sh:order 13 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 41 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:subject_category_closure ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -11134,63 +11681,104 @@ biolink:GeneRegulatesGeneAssociation a sh:NodeShape ; sh:order 15 ; sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:adjusted_p_value ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:subject_namespace ], + sh:order 38 ; + sh:path rdfs:label ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 11 ; sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category ], + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 18 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 6 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 39 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 4 ; + sh:path rdf:subject ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 19 ; + sh:path biolink:original_predicate ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path biolink:deprecated ] ; + sh:order 17 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OrganismTaxon ; + sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:species_context_qualifier ] ; sh:targetClass biolink:GeneRegulatesGeneAssociation . biolink:GeneToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene that is the subject of the association" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; @@ -11202,14 +11790,7 @@ biolink:GeneToEntityAssociationMixin a sh:NodeShape ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene that is the subject of the association" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 0 ; - sh:path rdf:subject ] ; + sh:path rdf:object ] ; sh:targetClass biolink:GeneToEntityAssociationMixin . biolink:GeneToExpressionSiteAssociation a sh:NodeShape ; @@ -11218,43 +11799,73 @@ biolink:GeneToExpressionSiteAssociation a sh:NodeShape ; sh:description "An association between a gene and a gene expression site, possibly qualified by stage/timing info." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path rdf:type ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 25 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 27 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_evidence ], + sh:order 20 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 18 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category ], + sh:order 19 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:negated ], + sh:order 39 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 33 ; + sh:path biolink:iri ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 38 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:category ], + sh:order 9 ; + sh:path biolink:has_evidence ], [ sh:class biolink:AnatomicalEntity ; sh:description "location in which the gene is expressed" ; sh:maxCount 1 ; @@ -11262,70 +11873,39 @@ biolink:GeneToExpressionSiteAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:original_object ], + sh:order 17 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category_closure ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:knowledge_level ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 14 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:adjusted_p_value ], + sh:order 22 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:primary_knowledge_source ], + sh:order 30 ; + sh:path biolink:p_value ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:subject_closure ], + sh:order 7 ; + sh:path biolink:qualifiers ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "Gene or gene product positively within the specified anatomical entity (or subclass, i.e. cellular component) location." ; sh:maxCount 1 ; @@ -11333,18 +11913,24 @@ biolink:GeneToExpressionSiteAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNodeOrIRI ; sh:order 2 ; sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category ], + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_namespace ], + sh:order 15 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 21 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -11352,98 +11938,98 @@ biolink:GeneToExpressionSiteAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 32 ; sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_predicate ], + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_namespace ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:timepoint ], - [ sh:class biolink:LifeStage ; - sh:description "stage at which the gene is expressed in the site" ; - sh:maxCount 1 ; + sh:order 36 ; + sh:path rdfs:label ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:stage_qualifier ], + sh:order 8 ; + sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; sh:description "can be used to indicate magnitude, or also ranking" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:quantifier_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 38 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path rdfs:label ], + sh:order 31 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:subject_label_closure ], + sh:order 11 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path biolink:category ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 29 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:publications ], - [ sh:description "expression relationship" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path rdf:predicate ], + sh:order 37 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path biolink:deprecated ], + sh:order 5 ; + sh:path biolink:negated ], + [ sh:class biolink:LifeStage ; + sh:description "stage at which the gene is expressed in the site" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:stage_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 22 ; - sh:path biolink:object_closure ], + sh:order 35 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:object_label_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "expression relationship" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path dct:description ], + sh:order 3 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:p_value ] ; + sh:order 6 ; + sh:path biolink:qualifier ] ; sh:targetClass biolink:GeneToExpressionSiteAssociation . biolink:GeneToGeneCoexpressionAssociation a sh:NodeShape ; @@ -11451,133 +12037,133 @@ biolink:GeneToGeneCoexpressionAssociation a sh:NodeShape ; sh:closed true ; sh:description "Indicates that two genes are co-expressed, generally under the same conditions." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Optional quantitative value indicating degree of expression." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:quantifier_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 41 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:p_value ], + sh:order 27 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:original_object ], + sh:order 13 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 39 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:subject_closure ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 31 ; sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:original_subject ], + sh:order 17 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path rdf:type ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Optional quantitative value indicating degree of expression." ; + sh:order 16 ; + sh:path biolink:agent_type ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 11 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:LifeStage ; + sh:description "stage during which gene or protein expression of takes place." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:quantifier_qualifier ], + sh:order 2 ; + sh:path biolink:stage_qualifier ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 36 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:qualifiers ], + sh:order 26 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:knowledge_source ], - [ sh:description "a human-readable description of an entity" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path dct:description ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:publications ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:expression_site ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:negated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:has_attribute ], + sh:order 14 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:subject_label_closure ], + sh:order 20 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 28 ; sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:object_category_closure ], + sh:order 3 ; + sh:path biolink:phenotypic_state ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 30 ; sh:path biolink:object_label_closure ], - [ sh:class biolink:LifeStage ; - sh:description "stage during which gene or protein expression of takes place." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:stage_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path rdf:type ], + sh:order 32 ; + sh:path biolink:p_value ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; @@ -11585,111 +12171,116 @@ biolink:GeneToGeneCoexpressionAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNodeOrIRI ; sh:order 6 ; sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:subject_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 18 ; + sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:subject_category_closure ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:knowledge_level ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path biolink:deprecated ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:order 19 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 16 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 4 ; + sh:path rdf:subject ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; + sh:order 7 ; + sh:path biolink:negated ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:phenotypic_state ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path biolink:category ], + sh:order 1 ; + sh:path biolink:expression_site ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 24 ; sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:qualifier ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:order 35 ; + sh:path biolink:iri ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:publications ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 4 ; - sh:path rdf:subject ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 15 ; + sh:path biolink:knowledge_level ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path rdfs:label ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:has_evidence ], + sh:order 21 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 12 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:original_predicate ] ; + sh:order 38 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 40 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:qualifiers ] ; sh:targetClass biolink:GeneToGeneCoexpressionAssociation . biolink:GeneToGeneFamilyAssociation a sh:NodeShape ; @@ -11697,34 +12288,33 @@ biolink:GeneToGeneFamilyAssociation a sh:NodeShape ; sh:closed true ; sh:description "Set membership of a gene in a family of genes related by common evolutionary ancestry usually inferred by sequence comparisons. The genes in a given family generally share common sequence motifs which generally map onto shared gene product structure-function relationships." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], + sh:order 18 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:Gene ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -11732,114 +12322,95 @@ biolink:GeneToGeneFamilyAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], + sh:order 32 ; + sh:path biolink:category ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:class biolink:GeneFamily ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 33 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 26 ; sh:path biolink:object_label_closure ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:class biolink:GeneFamily ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "a point in time" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -11847,71 +12418,96 @@ biolink:GeneToGeneFamilyAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:knowledge_level ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 35 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 24 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:description "membership of the gene in the given gene family." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "membership of the gene in the given gene family." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:order 31 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ] ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ] ; sh:targetClass biolink:GeneToGeneFamilyAssociation . biolink:GeneToGeneHomologyAssociation a sh:NodeShape ; @@ -11919,46 +12515,24 @@ biolink:GeneToGeneHomologyAssociation a sh:NodeShape ; sh:closed true ; sh:description "A homology association between two genes. May be orthology (in which case the species of subject and object should differ) or paralogy (in which case the species may be the same)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 37 ; sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; @@ -11973,105 +12547,51 @@ biolink:GeneToGeneHomologyAssociation a sh:NodeShape ; sh:order 2 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:description "homology relationship type" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 30 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:object_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 0 ; - sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 34 ; + sh:path rdfs:label ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 28 ; sh:path biolink:p_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -12084,335 +12604,275 @@ biolink:GeneToGeneHomologyAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:description "homology relationship type" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 31 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 19 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ] ; - sh:targetClass biolink:GeneToGeneHomologyAssociation . - -biolink:GeneToGeneProductRelationship a sh:NodeShape ; - rdfs:subClassOf biolink:SequenceFeatureRelationship ; - sh:closed true ; - sh:description "A gene is transcribed and potentially translated to a gene product" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 29 ; sh:path biolink:adjusted_p_value ], - [ sh:class biolink:GeneProductMixin ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "a point in time" ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:order 35 ; + sh:path dct:description ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; sh:order 32 ; sh:path biolink:category ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 26 ; sh:path biolink:object_label_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "a human-readable description of an entity" ; + sh:path biolink:negated ] ; + sh:targetClass biolink:GeneToGeneHomologyAssociation . + +biolink:GeneToGeneProductRelationship a sh:NodeShape ; + rdfs:subClassOf biolink:SequenceFeatureRelationship ; + sh:closed true ; + sh:description "A gene is transcribed and potentially translated to a gene product" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 34 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Gene ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 36 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ] ; - sh:targetClass biolink:GeneToGeneProductRelationship . - -biolink:GeneToGoTermAssociation a sh:NodeShape ; - rdfs:subClassOf biolink:FunctionalAssociation ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:GeneProductMixin ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], + sh:order 31 ; + sh:path biolink:iri ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -12427,28 +12887,43 @@ biolink:GeneToGoTermAssociation a sh:NodeShape ; sh:order 8 ; sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; sh:order 33 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -12456,71 +12931,78 @@ biolink:GeneToGoTermAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 30 ; sh:path biolink:id ], - [ sh:description "a point in time" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:Gene ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 35 ; sh:path dct:description ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ] ; + sh:targetClass biolink:GeneToGeneProductRelationship . + +biolink:GeneToGoTermAssociation a sh:NodeShape ; + rdfs:subClassOf biolink:FunctionalAssociation ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], + sh:order 33 ; + sh:path rdf:type ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; @@ -12532,147 +13014,147 @@ biolink:GeneToGoTermAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 36 ; sh:path biolink:has_attribute ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:Gene ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a point in time" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "class describing the activity, process or localization of the gene product" ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 11 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ] ; - sh:targetClass biolink:GeneToGoTermAssociation . - -biolink:GeneToPathwayAssociation a sh:NodeShape ; - rdfs:subClassOf biolink:Association ; - sh:closed true ; - sh:description "An interaction between a gene or gene product and a biological process or pathway." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:class biolink:Pathway ; - sh:description "the pathway that includes or is affected by the gene or gene product" ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:nodeKind sh:Literal ; + sh:order 35 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 24 ; sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Gene ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 31 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:subject_category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -12680,6 +13162,13 @@ biolink:GeneToPathwayAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 30 ; sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "class describing the activity, process or localization of the gene product" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -12687,100 +13176,120 @@ biolink:GeneToPathwayAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 12 ; sh:path biolink:agent_type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:description "a point in time" ; + sh:order 4 ; + sh:path biolink:qualifier ] ; + sh:targetClass biolink:GeneToGoTermAssociation . + +biolink:GeneToPathwayAssociation a sh:NodeShape ; + rdfs:subClassOf biolink:Association ; + sh:closed true ; + sh:description "An interaction between a gene or gene product and a biological process or pathway." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:timepoint ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 26 ; sh:path biolink:object_label_closure ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 28 ; sh:path biolink:p_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 35 ; + sh:path dct:description ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; @@ -12788,157 +13297,231 @@ biolink:GeneToPathwayAssociation a sh:NodeShape ; sh:order 14 ; sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the gene or gene product entity that participates or influences the pathway" ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:Pathway ; + sh:description "the pathway that includes or is affected by the gene or gene product" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 0 ; - sh:path rdf:subject ] ; - sh:targetClass biolink:GeneToPathwayAssociation . - -biolink:GeneToPhenotypicFeatureAssociation a sh:NodeShape ; - rdfs:subClassOf biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 40 ; + sh:order 37 ; sh:path biolink:deprecated ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:object_direction_qualifier ], + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:id ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 9 ; + sh:order 6 ; sh:path biolink:publications ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path biolink:category ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 31 ; - sh:path biolink:p_value ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:path biolink:iri ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the gene or gene product entity that participates or influences the pathway" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:sex_qualifier ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 48 ; - sh:path biolink:frequency_qualifier ], + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_namespace ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 36 ; + sh:order 33 ; sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; sh:order 24 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:path biolink:object_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:has_attribute ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 7 ; + sh:path biolink:has_evidence ] ; + sh:targetClass biolink:GeneToPathwayAssociation . + +biolink:GeneToPhenotypicFeatureAssociation a sh:NodeShape ; + rdfs:subClassOf biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 45 ; - sh:path biolink:subject_direction_qualifier ], + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ], + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 30 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], + sh:order 26 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 46 ; sh:path biolink:object_aspect_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:iri ], + sh:order 41 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:knowledge_source ], + sh:order 38 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a point in time" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is correlated with the phenotypic feature" ; + sh:order 16 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:subject_category_closure ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 15 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:has_total ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 35 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:double ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:has_quotient ], + sh:order 6 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 17 ; + sh:path biolink:original_subject ], [ sh:class biolink:PhenotypicFeature ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -12946,142 +13529,180 @@ biolink:GeneToPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 45 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 39 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:id ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:order 43 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 14 ; - sh:path biolink:knowledge_level ], + sh:nodeKind sh:Literal ; + sh:order 40 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 18 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 47 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 44 ; sh:path biolink:has_percentage ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 20 ; + sh:path biolink:subject_category ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:original_object ], + sh:order 48 ; + sh:path biolink:frequency_qualifier ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_evidence ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:object_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path dct:description ], + sh:order 27 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is correlated with the phenotypic feature" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 22 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 28 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 37 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 36 ; + sh:path rdf:type ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 3 ; + sh:path biolink:sex_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_subject ], + sh:order 42 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 47 ; - sh:path biolink:qualified_predicate ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 22 ; + sh:path biolink:subject_closure ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:knowledge_level ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:order 31 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:original_predicate ] ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ] ; sh:targetClass biolink:GeneToPhenotypicFeatureAssociation . biolink:Genome a sh:NodeShape ; @@ -13090,82 +13711,89 @@ biolink:Genome a sh:NodeShape ; sh:description "A genome is the sum of genetic material within a cell or virion." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:provided_by ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:full_name ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:category ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 1 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path dct:description ], + sh:order 0 ; + sh:path biolink:has_biological_sequence ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:in_taxon ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path rdf:type ], [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "connects a genomic feature to its sequence" ; + sh:order 9 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; - sh:path biolink:iri ] ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:in_taxon_label ] ; sh:targetClass biolink:Genome . biolink:GenomicBackgroundExposure a sh:NodeShape ; @@ -13178,16 +13806,22 @@ biolink:GenomicBackgroundExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_gene_or_gene_product ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:full_name ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:order 11 ; + sh:path biolink:provided_by ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:in_taxon ], + sh:order 18 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; @@ -13195,36 +13829,61 @@ biolink:GenomicBackgroundExposure a sh:NodeShape ; sh:order 15 ; sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:id ], + sh:order 19 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:in_taxon_label ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 8 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:iri ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:synonym ], - [ sh:description "a point in time" ; + sh:order 16 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:timepoint ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:in_taxon_label ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -13232,58 +13891,36 @@ biolink:GenomicBackgroundExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_attribute_type ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 17 ; sh:path dct:description ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 8 ; - sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:has_attribute ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:order 2 ; + sh:path biolink:has_biological_sequence ], + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; - sh:path rdfs:label ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:has_biological_sequence ] ; + sh:path rdfs:label ] ; sh:targetClass biolink:GenomicBackgroundExposure . biolink:GenomicEntity a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "connects a genomic feature to its sequence" ; + sh:property [ sh:datatype xsd:string ; + sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; @@ -13295,19 +13932,58 @@ biolink:GenomicSequenceLocalization a sh:NodeShape ; sh:closed true ; sh:description "A relationship between a sequence feature and a nucleic acid entity it is localized to. The reference entity may be a chromosome, chromosome region or information entity such as a contig." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NucleicAcidEntity ; + sh:property [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 40 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:integer ; + sh:description "The position at which the subject nucleic acid entity starts on the chromosome or other entity to which it is located on. (ie: the start of the sequence being referenced is 0)." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:start_interbase_coordinate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:object_closure ], + [ sh:class biolink:NucleicAcidEntity ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path rdf:subject ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 38 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:object_namespace ], + sh:order 35 ; + sh:path biolink:id ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:category ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -13315,111 +13991,154 @@ biolink:GenomicSequenceLocalization a sh:NodeShape ; sh:minCount 1 ; sh:order 16 ; sh:path biolink:knowledge_level ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 41 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; + sh:order 15 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category ], + [ sh:description "The phase for a coding sequence entity. For example, phase of a CDS as represented in a GFF3 with a value of 0, 1 or 2." ; + sh:in ( "0" "1" "2" ) ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:phase ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path dct:description ], + sh:order 6 ; + sh:path rdf:predicate ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 34 ; sh:path biolink:adjusted_p_value ], + [ sh:description "The strand on which a feature is located. Has a value of '+' (sense strand or forward strand) or '-' (anti-sense strand or reverse strand)." ; + sh:in ( "+" "-" "." "?" ) ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:strand ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 17 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 30 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 32 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:original_subject ], - [ sh:description "The strand on which a feature is located. Has a value of '+' (sense strand or forward strand) or '-' (anti-sense strand or reverse strand)." ; - sh:in ( "+" "-" "." "?" ) ; + sh:order 20 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:strand ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:nodeKind sh:Literal ; + sh:order 42 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 36 ; sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category ], + sh:order 41 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:integer ; - sh:description "The position at which the subject nucleic acid entity starts on the chromosome or other entity to which it is located on. (ie: the start of the sequence being referenced is 0)." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:start_interbase_coordinate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category ], + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path biolink:p_value ], [ sh:class biolink:NucleicAcidEntity ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path rdf:object ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 39 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:qualifier ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 11 ; sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:integer ; sh:description "The position at which the subject nucleic acid entity ends on the chromosome or other entity to which it is located on." ; sh:maxCount 1 ; @@ -13427,127 +14146,135 @@ biolink:GenomicSequenceLocalization a sh:NodeShape ; sh:order 1 ; sh:path biolink:end_interbase_coordinate ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path biolink:id ], - [ sh:description "The phase for a coding sequence entity. For example, phase of a CDS as represented in a GFF3 with a value of 0, 1 or 2." ; - sh:in ( "0" "1" "2" ) ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:phase ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path rdf:type ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_evidence ], + sh:order 21 ; + sh:path biolink:original_object ], [ sh:description "The version of the genome on which a feature is located. For example, GRCh38 for Homo sapiens." ; sh:in ( "+" "-" "." "?" ) ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:genome_build ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 17 ; - sh:path biolink:agent_type ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:qualifiers ], + sh:order 26 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:qualifier ], + sh:order 18 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:object_namespace ] ; + sh:targetClass biolink:GenomicSequenceLocalization . + +biolink:GenotypeAsAModelOfDiseaseAssociation a sh:NodeShape ; + rdfs:subClassOf biolink:GenotypeToDiseaseAssociation ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 42 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; + sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:Genotype ; + sh:description "A genotype that has a role in modeling the disease." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:negated ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:p_value ], + sh:order 40 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:subject_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:deprecated ], + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 25 ; - sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path rdfs:label ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:original_predicate ] ; - sh:targetClass biolink:GenomicSequenceLocalization . - -biolink:GenotypeAsAModelOfDiseaseAssociation a sh:NodeShape ; - rdfs:subClassOf biolink:GenotypeToDiseaseAssociation ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 36 ; sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; @@ -13555,55 +14282,23 @@ biolink:GenotypeAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:order 28 ; sh:path biolink:p_value ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -13612,186 +14307,138 @@ biolink:GenotypeAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:order 30 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 23 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 34 ; sh:path rdfs:label ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:order 41 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 43 ; + sh:path biolink:frequency_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:object_category ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_direction_qualifier ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:description "The relationship to the disease" ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 38 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 11 ; + sh:path biolink:knowledge_level ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:frequency_qualifier ], + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Genotype ; - sh:description "A genotype that has a role in modeling the disease." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 35 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The relationship to the disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ] ; + sh:order 1 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:GenotypeAsAModelOfDiseaseAssociation . biolink:GenotypeToEntityAssociationMixin a sh:NodeShape ; @@ -13811,7 +14458,8 @@ biolink:GenotypeToEntityAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; @@ -13825,87 +14473,52 @@ biolink:GenotypeToGeneAssociation a sh:NodeShape ; sh:description "Any association between a genotype and a gene. The genotype have have multiple variants in that gene or a single one. There is no assumption of cardinality" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], + sh:order 31 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:description "a point in time" ; + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Gene ; - sh:description "gene implicated in genotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "a human-readable description of an entity" ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:class biolink:Genotype ; - sh:description "parent genotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; @@ -13916,13 +14529,27 @@ biolink:GenotypeToGeneAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 33 ; sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "the relationship type used to connect genotype to gene" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 34 ; @@ -13933,63 +14560,97 @@ biolink:GenotypeToGeneAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:negated ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 18 ; + sh:path biolink:object_category ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 30 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:description "the relationship type used to connect genotype to gene" ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:Genotype ; + sh:description "parent genotype" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:Gene ; + sh:description "gene implicated in genotype" ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; @@ -14003,42 +14664,34 @@ biolink:GenotypeToGeneAssociation a sh:NodeShape ; sh:order 4 ; sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], + sh:order 28 ; + sh:path biolink:p_value ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ] ; + sh:order 13 ; + sh:path biolink:timepoint ] ; sh:targetClass biolink:GenotypeToGeneAssociation . biolink:GenotypeToGenotypePartAssociation a sh:NodeShape ; @@ -14047,113 +14700,38 @@ biolink:GenotypeToGenotypePartAssociation a sh:NodeShape ; sh:description "Any association between one genotype and a genotypic entity that is a sub-component of it" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:Genotype ; - sh:description "parent genotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 30 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 20 ; sh:path biolink:object_closure ], - [ sh:class biolink:Genotype ; - sh:description "child genotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; @@ -14165,102 +14743,182 @@ biolink:GenotypeToGenotypePartAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 19 ; sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:Genotype ; + sh:description "parent genotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:anyURI ; sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:original_predicate ], + [ sh:class biolink:Genotype ; + sh:description "child genotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:description "a point in time" ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 34 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:subject_category_closure ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], + sh:order 31 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ] ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:object_namespace ] ; sh:targetClass biolink:GenotypeToGenotypePartAssociation . biolink:GenotypeToPhenotypicFeatureAssociation a sh:NodeShape ; @@ -14269,253 +14927,254 @@ biolink:GenotypeToPhenotypicFeatureAssociation a sh:NodeShape ; sh:description "Any association between one genotype and a phenotypic feature, where having the genotype confers the phenotype, either in isolation or through environment" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 17 ; sh:path biolink:original_object ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 31 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "a human-readable description of an entity" ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path dct:description ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], + sh:order 43 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 48 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 45 ; sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path biolink:has_quotient ], + sh:order 3 ; + sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_label_closure ], + sh:order 26 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 20 ; sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 48 ; - sh:path biolink:frequency_qualifier ], + sh:order 32 ; + sh:path biolink:iri ], [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:knowledge_level ], + sh:order 13 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:subject_direction_qualifier ], + sh:nodeKind sh:Literal ; + sh:order 41 ; + sh:path biolink:has_quotient ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 23 ; sh:path biolink:object_category_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 47 ; - sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 40 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:p_value ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:deprecated ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 36 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:sex_qualifier ], + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:object_namespace ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 46 ; sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:id ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 39 ; + sh:path biolink:has_count ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 44 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 42 ; sh:path biolink:has_percentage ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 37 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 34 ; + sh:path rdf:type ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:description "a point in time" ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:timepoint ], + sh:order 27 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:adjusted_p_value ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 29 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path biolink:has_total ], + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_subject ], + sh:order 47 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdf:type ], + sh:order 35 ; + sh:path rdfs:label ], [ sh:class biolink:Genotype ; sh:description "genotype that is associated with the phenotypic feature" ; sh:maxCount 1 ; @@ -14523,29 +15182,33 @@ biolink:GenotypeToPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 38 ; + sh:path biolink:deprecated ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path rdfs:label ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:agent_type ] ; + sh:order 5 ; + sh:path biolink:qualifier ] ; sh:targetClass biolink:GenotypeToPhenotypicFeatureAssociation . biolink:GenotypeToVariantAssociation a sh:NodeShape ; @@ -14553,28 +15216,12 @@ biolink:GenotypeToVariantAssociation a sh:NodeShape ; sh:closed true ; sh:description "Any association between a genotype and a sequence variant." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:property [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 31 ; + sh:path biolink:iri ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -14582,35 +15229,40 @@ biolink:GenotypeToVariantAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 12 ; sh:path biolink:agent_type ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 25 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:description "the relationship type used to connect genotype to gene" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 33 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; @@ -14622,30 +15274,29 @@ biolink:GenotypeToVariantAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 36 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], [ sh:datatype xsd:anyURI ; sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -14658,39 +15309,51 @@ biolink:GenotypeToVariantAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], + [ sh:class biolink:SequenceVariant ; + sh:description "gene implicated in genotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 37 ; sh:path biolink:deprecated ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 32 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -14703,71 +15366,76 @@ biolink:GenotypeToVariantAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:class biolink:Genotype ; - sh:description "parent genotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 28 ; + sh:path biolink:p_value ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 35 ; sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "the relationship type used to connect genotype to gene" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 20 ; sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:SequenceVariant ; - sh:description "gene implicated in genotype" ; + [ sh:class biolink:Genotype ; + sh:description "parent genotype" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ] ; + sh:order 0 ; + sh:path rdf:subject ] ; sh:targetClass biolink:GenotypeToVariantAssociation . biolink:GenotypicSex a sh:NodeShape ; @@ -14775,43 +15443,79 @@ biolink:GenotypicSex a sh:NodeShape ; sh:closed true ; sh:description "An attribute corresponding to the genotypic sex of the individual, based upon genotypic composition of sex chromosomes." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:deprecated ], + sh:order 4 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -14819,258 +15523,237 @@ biolink:GenotypicSex a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:xref ] ; + sh:targetClass biolink:GenotypicSex . + +biolink:GeographicExposure a sh:NodeShape ; + rdfs:subClassOf biolink:EnvironmentalExposure ; + sh:closed true ; + sh:description "A geographic exposure is a factor relating to geographic proximity to some impactful entity." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; + sh:order 1 ; sh:path rdfs:label ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; + sh:order 11 ; sh:path biolink:category ], [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], + sh:order 9 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; + sh:order 6 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; + sh:order 13 ; sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ] ; - sh:targetClass biolink:GenotypicSex . - -biolink:GeographicExposure a sh:NodeShape ; - rdfs:subClassOf biolink:EnvironmentalExposure ; - sh:closed true ; - sh:description "A geographic exposure is a factor relating to geographic proximity to some impactful entity." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:timepoint ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNodeOrIRI ; sh:order 3 ; sh:path biolink:has_quantitative_value ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; + sh:path biolink:provided_by ] ; + sh:targetClass biolink:GeographicExposure . + +biolink:GeographicLocationAtTime a sh:NodeShape ; + rdfs:subClassOf biolink:GeographicLocation ; + sh:closed true ; + sh:description "a location that can be described in lat/long coordinates, for a particular time" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 12 ; + sh:order 10 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 6 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdfs:label ], + sh:order 0 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; + sh:order 9 ; sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; + sh:order 5 ; sh:path biolink:full_name ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ] ; - sh:targetClass biolink:GeographicExposure . - -biolink:GeographicLocationAtTime a sh:NodeShape ; - rdfs:subClassOf biolink:GeographicLocation ; - sh:closed true ; - sh:description "a location that can be described in lat/long coordinates, for a particular time" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:xref ], [ sh:datatype xsd:float ; sh:description "longitude" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:longitude ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:id ], [ sh:datatype xsd:float ; sh:description "latitude" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:latitude ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:category ], + sh:order 7 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:iri ] ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path dct:description ] ; sh:targetClass biolink:GeographicLocationAtTime . biolink:GrossAnatomicalStructure a sh:NodeShape ; rdfs:subClassOf biolink:AnatomicalEntity ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; @@ -15080,37 +15763,45 @@ biolink:GrossAnatomicalStructure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 8 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 6 ; + sh:path biolink:id ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 3 ; - sh:path biolink:xref ] ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ] ; sh:targetClass biolink:GrossAnatomicalStructure . biolink:Haplotype a sh:NodeShape ; @@ -15118,51 +15809,63 @@ biolink:Haplotype a sh:NodeShape ; sh:closed true ; sh:description "A set of zero or more Alleles on a single instance of a Sequence[VMC]" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "connects a genomic feature to its sequence" ; + sh:property [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], + sh:order 3 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], + sh:order 8 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path dct:description ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:synonym ], + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -15175,48 +15878,66 @@ biolink:Haplotype a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], + sh:order 10 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:provided_by ] ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ] ; sh:targetClass biolink:Haplotype . biolink:Hospitalization a sh:NodeShape ; rdfs:subClassOf biolink:ClinicalIntervention ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path dct:description ], + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -15224,45 +15945,27 @@ biolink:Hospitalization a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path rdfs:label ], + sh:order 9 ; + sh:path dct:description ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:category ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:synonym ] ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:Hospitalization . biolink:HospitalizationOutcome a sh:NodeShape ; @@ -15276,66 +15979,61 @@ biolink:Human a sh:NodeShape ; sh:closed true ; sh:description "A member of the the species Homo sapiens." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], + sh:order 8 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], + sh:order 5 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -15343,11 +16041,22 @@ biolink:Human a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ] ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:Human . biolink:InformationContentEntityToNamedThingAssociation a sh:NodeShape ; @@ -15356,220 +16065,225 @@ biolink:InformationContentEntityToNamedThingAssociation a sh:NodeShape ; sh:description "association between a named thing and a information content entity where the specific context of the relationship between that named thing and the publication is unknown. For example, model organisms databases often capture the knowledge that a gene is found in a journal article, but not specifically the context in which that gene was documented in the article. In these cases, this association with the accompanying predicate 'mentions' could be used. Conversely, for more specific associations (like 'gene to disease association', the publication should be captured as an edge property)." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "a human-readable description of an entity" ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 29 ; sh:path biolink:adjusted_p_value ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; sh:order 32 ; sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], + sh:order 34 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 25 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ] ; + sh:order 26 ; + sh:path biolink:object_label_closure ] ; sh:targetClass biolink:InformationContentEntityToNamedThingAssociation . biolink:Invertebrate a sh:NodeShape ; @@ -15577,78 +16291,84 @@ biolink:Invertebrate a sh:NodeShape ; sh:closed true ; sh:description "An animal lacking a vertebral column. This group consists of 98% of all animal species." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + sh:property [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ] ; + sh:order 2 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:Invertebrate . biolink:JournalArticle a sh:NodeShape ; @@ -15657,10 +16377,33 @@ biolink:JournalArticle a sh:NodeShape ; sh:description "an article, typically presenting results of research, that is published in an issue of a scientific journal." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:pages ], + sh:order 2 ; + sh:path biolink:volume ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:xref ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; sh:minCount 1 ; @@ -15668,97 +16411,87 @@ biolink:JournalArticle a sh:NodeShape ; sh:order 10 ; sh:path dct:type ], [ sh:datatype xsd:string ; + sh:description "Optional value, if used locally as a convenience, is set to the iso abbreviation of the 'published in' parent." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:rights ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:deprecated ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:iso_abbreviation ], + [ sh:datatype xsd:anyURI ; + sh:description "mesh terms tagging a publication" ; sh:nodeKind sh:Literal ; - sh:order 22 ; - sh:path rdfs:label ], + sh:order 8 ; + sh:path biolink:mesh_terms ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:license ], [ sh:datatype xsd:string ; - sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:issue ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 13 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 18 ; + sh:path biolink:id ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:authors ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:order 25 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:category ], + sh:order 7 ; + sh:path biolink:keywords ], [ sh:datatype xsd:string ; - sh:description "Optional value, if used locally as a convenience, is set to the iso abbreviation of the 'published in' parent." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:iso_abbreviation ], + sh:order 23 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; - sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:volume ], + sh:order 21 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:pages ], + [ sh:datatype xsd:string ; + sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:summary ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:has_attribute ], + sh:order 22 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; + sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:format ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:authors ], - [ sh:description "a human-readable description of an entity" ; + sh:order 3 ; + sh:path biolink:issue ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path dct:description ], + sh:order 14 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:id ], + sh:order 17 ; + sh:path biolink:synonym ], [ sh:datatype xsd:anyURI ; sh:description "The enclosing parent serial containing the article should have industry-standard identifier from ISSN." ; sh:maxCount 1 ; @@ -15767,35 +16500,27 @@ biolink:JournalArticle a sh:NodeShape ; sh:order 0 ; sh:path biolink:published_in ], [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:keywords ], - [ sh:datatype xsd:anyURI ; - sh:description "mesh terms tagging a publication" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:mesh_terms ], + sh:order 19 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path rdf:type ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:xref ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:creation_date ], + sh:order 12 ; + sh:path biolink:rights ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:provided_by ] ; + sh:order 6 ; + sh:path biolink:summary ] ; sh:targetClass biolink:JournalArticle . biolink:LogOddsAnalysisResult a sh:NodeShape ; @@ -15803,44 +16528,48 @@ biolink:LogOddsAnalysisResult a sh:NodeShape ; sh:closed true ; sh:description "A result of a log odds ratio analysis." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:rights ], + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 1 ; + sh:path biolink:rights ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:creation_date ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; @@ -15851,41 +16580,42 @@ biolink:LogOddsAnalysisResult a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:license ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; - sh:path biolink:full_name ] ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:LogOddsAnalysisResult . biolink:MacromolecularComplex a sh:NodeShape ; @@ -15893,78 +16623,84 @@ biolink:MacromolecularComplex a sh:NodeShape ; sh:closed true ; sh:description "A stable assembly of two or more macromolecules, i.e. proteins, nucleic acids, carbohydrates or lipids, in which at least one component is a protein and the constituent parts function together." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdf:type ], + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:id ], + sh:order 8 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:in_taxon_label ], + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path rdf:type ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:category ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path rdfs:label ], + sh:order 2 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 4 ; - sh:path biolink:xref ] ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:id ] ; sh:targetClass biolink:MacromolecularComplex . biolink:MacromolecularMachineToBiologicalProcessAssociation a sh:NodeShape ; @@ -15973,51 +16709,107 @@ biolink:MacromolecularMachineToBiologicalProcessAssociation a sh:NodeShape ; sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a biological process or pathway (as represented in the GO biological process branch), where the entity carries out some part of the process, regulates it, or acts upstream of it." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 28 ; sh:path biolink:p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 20 ; sh:path biolink:object_closure ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; @@ -16025,11 +16817,42 @@ biolink:MacromolecularMachineToBiologicalProcessAssociation a sh:NodeShape ; sh:order 16 ; sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], [ sh:class biolink:BiologicalProcess ; sh:description "class describing the activity, process or localization of the gene product" ; sh:maxCount 1 ; @@ -16037,12 +16860,45 @@ biolink:MacromolecularMachineToBiologicalProcessAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -16055,161 +16911,100 @@ biolink:MacromolecularMachineToBiologicalProcessAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 25 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:description "a point in time" ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 8 ; + sh:path biolink:knowledge_source ] ; + sh:targetClass biolink:MacromolecularMachineToBiologicalProcessAssociation . + +biolink:MacromolecularMachineToCellularComponentAssociation a sh:NodeShape ; + rdfs:subClassOf biolink:FunctionalAssociation ; + sh:closed true ; + sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a cellular component (as represented in the GO cellular component branch), where the entity carries out its function in the cellular component." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a human-readable description of an entity" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 32 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:subject_category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ] ; - sh:targetClass biolink:MacromolecularMachineToBiologicalProcessAssociation . - -biolink:MacromolecularMachineToCellularComponentAssociation a sh:NodeShape ; - rdfs:subClassOf biolink:FunctionalAssociation ; - sh:closed true ; - sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a cellular component (as represented in the GO cellular component branch), where the entity carries out its function in the cellular component." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -16217,137 +17012,101 @@ biolink:MacromolecularMachineToCellularComponentAssociation a sh:NodeShape ; sh:order 18 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 35 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:order 28 ; + sh:path biolink:p_value ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:CellularComponent ; + sh:description "class describing the activity, process or localization of the gene product" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 11 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -16355,72 +17114,60 @@ biolink:MacromolecularMachineToCellularComponentAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 30 ; sh:path biolink:id ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:CellularComponent ; - sh:description "class describing the activity, process or localization of the gene product" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ] ; + sh:order 14 ; + sh:path biolink:original_subject ] ; sh:targetClass biolink:MacromolecularMachineToCellularComponentAssociation . biolink:MacromolecularMachineToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "an association which has a macromolecular machine mixin as a subject" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -16428,13 +17175,13 @@ biolink:MacromolecularMachineToEntityAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ] ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:MacromolecularMachineToEntityAssociationMixin . biolink:MacromolecularMachineToMolecularActivityAssociation a sh:NodeShape ; @@ -16443,22 +17190,34 @@ biolink:MacromolecularMachineToMolecularActivityAssociation a sh:NodeShape ; sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a molecular activity (as represented in the GO molecular function branch), where the entity carries out the activity, or contributes to its execution." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a point in time" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -16466,101 +17225,62 @@ biolink:MacromolecularMachineToMolecularActivityAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:knowledge_level ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:description "a human-readable description of an entity" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:MolecularActivity ; + sh:description "class describing the activity, process or localization of the gene product" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -16568,95 +17288,127 @@ biolink:MacromolecularMachineToMolecularActivityAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 30 ; sh:path biolink:id ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 31 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:class biolink:MolecularActivity ; - sh:description "class describing the activity, process or localization of the gene product" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; sh:order 33 ; sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ] ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ] ; sh:targetClass biolink:MacromolecularMachineToMolecularActivityAssociation . biolink:MappingCollection a sh:NodeShape ; @@ -16675,62 +17427,61 @@ biolink:MaterialSampleDerivationAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a material sample and the material entity from which it is derived." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:property [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:anyURI ; sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:original_predicate ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "derivation relationship" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -16738,63 +17489,23 @@ biolink:MaterialSampleDerivationAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 30 ; sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:class biolink:MaterialSample ; - sh:description "the material sample being described" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "a point in time" ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:timepoint ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], + sh:order 33 ; + sh:path rdf:type ], [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 28 ; + sh:path biolink:p_value ], [ sh:class biolink:NamedThing ; sh:description "the material entity the sample was derived from. This may be another material sample, or any other material entity, including for example an organism, a geographic feature, or some environmental material." ; sh:maxCount 1 ; @@ -16802,141 +17513,83 @@ biolink:MaterialSampleDerivationAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:description "derivation relationship" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 18 ; + sh:path biolink:object_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:subject_category_closure ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:MaterialSampleDerivationAssociation . - -biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; - rdfs:subClassOf biolink:Association ; - sh:closed true ; - sh:description "An association between a material sample and a disease or phenotype." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; @@ -16944,79 +17597,91 @@ biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:order 3 ; sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], + sh:order 37 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:MaterialSample ; + sh:description "the material sample being described" ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:original_subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 8 ; + sh:path biolink:knowledge_source ] ; + sh:targetClass biolink:MaterialSampleDerivationAssociation . + +biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; + rdfs:subClassOf biolink:Association ; + sh:closed true ; + sh:description "An association between a material sample and a disease or phenotype." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:anyURI ; sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:original_predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 31 ; sh:path biolink:iri ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "disease or phenotype" ; sh:maxCount 1 ; @@ -17024,17 +17689,33 @@ biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], [ sh:class biolink:MaterialSample ; sh:description "the material sample being described" ; sh:maxCount 1 ; @@ -17042,76 +17723,157 @@ biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:object_category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:subject_category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a point in time" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 23 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 34 ; - sh:path rdfs:label ] ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ] ; sh:targetClass biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation . biolink:MaterialSampleToEntityAssociationMixin a sh:NodeShape ; @@ -17125,7 +17887,8 @@ biolink:MaterialSampleToEntityAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; @@ -17144,12 +17907,11 @@ biolink:MicroRNA a sh:NodeShape ; rdfs:subClassOf biolink:NoncodingRNAProduct ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 1 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -17157,84 +17919,92 @@ biolink:MicroRNA a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:full_name ], + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:synonym ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; - sh:path biolink:in_taxon_label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ] ; + sh:path biolink:in_taxon_label ] ; sh:targetClass biolink:MicroRNA . biolink:ModelToDiseaseAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "This mixin is used for any association class for which the subject (source node) plays the role of a 'model', in that it recapitulates some features of the disease in a way that is useful for studying the disease outside a patient carrying the disease" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The relationship to the disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:NamedThing ; + sh:property [ sh:class biolink:NamedThing ; sh:description "The entity that serves as the model of the disease. This may be an organism, a strain of organism, a genotype or variant that exhibits similar features, or a gene that when mutated exhibits features of the disease" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "The relationship to the disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -17250,127 +18020,138 @@ biolink:MolecularActivityToChemicalEntityAssociation a sh:NodeShape ; sh:description "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], + sh:order 28 ; + sh:path biolink:p_value ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 33 ; + sh:path rdf:type ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; sh:order 32 ; sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:class biolink:MolecularActivity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:ChemicalEntity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 29 ; sh:path biolink:adjusted_p_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 30 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:MolecularActivity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -17378,56 +18159,46 @@ biolink:MolecularActivityToChemicalEntityAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 12 ; sh:path biolink:agent_type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 20 ; sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 35 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; @@ -17435,35 +18206,39 @@ biolink:MolecularActivityToChemicalEntityAssociation a sh:NodeShape ; sh:order 8 ; sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:ChemicalEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ] ; + sh:order 36 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:MolecularActivityToChemicalEntityAssociation . biolink:MolecularActivityToMolecularActivityAssociation a sh:NodeShape ; @@ -17472,78 +18247,115 @@ biolink:MolecularActivityToMolecularActivityAssociation a sh:NodeShape ; sh:description "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 25 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 24 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 30 ; + sh:path biolink:id ], [ sh:datatype xsd:anyURI ; sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], + sh:order 37 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -17551,55 +18363,40 @@ biolink:MolecularActivityToMolecularActivityAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:knowledge_level ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 31 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:MolecularActivity ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -17607,56 +18404,33 @@ biolink:MolecularActivityToMolecularActivityAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 32 ; + sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:order 35 ; + sh:path dct:description ], [ sh:class biolink:MolecularActivity ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -17669,23 +18443,29 @@ biolink:MolecularActivityToMolecularActivityAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 33 ; sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ] ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:negated ] ; sh:targetClass biolink:MolecularActivityToMolecularActivityAssociation . biolink:MolecularActivityToPathwayAssociation a sh:NodeShape ; @@ -17699,49 +18479,101 @@ biolink:MolecularActivityToPathwayAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 37 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 31 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 33 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 19 ; sh:path biolink:subject_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:class biolink:MolecularActivity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -17749,6 +18581,12 @@ biolink:MolecularActivityToPathwayAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 12 ; sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path rdfs:label ], [ sh:class biolink:Pathway ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -17756,172 +18594,258 @@ biolink:MolecularActivityToPathwayAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 20 ; sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 24 ; sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:MolecularActivity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 23 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 28 ; - sh:path biolink:p_value ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:path biolink:p_value ] ; + sh:targetClass biolink:MolecularActivityToPathwayAssociation . + +biolink:MortalityOutcome a sh:NodeShape ; + sh:closed true ; + sh:description "An outcome of death from resulting from an exposure event." ; + sh:ignoredProperties ( rdf:type ) ; + sh:targetClass biolink:MortalityOutcome . + +biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation a sh:NodeShape ; + rdfs:subClassOf biolink:Association ; + sh:closed true ; + sh:description "" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], + sh:order 7 ; + sh:path biolink:population_context_qualifier ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 18 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], + sh:order 2 ; + sh:path biolink:subject_context_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 36 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 11 ; + sh:order 16 ; sh:path biolink:knowledge_level ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], + sh:order 3 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 26 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:path biolink:qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 24 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; + sh:order 21 ; sh:path biolink:original_object ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], + sh:order 38 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 5 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:path biolink:object_context_qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ] ; - sh:targetClass biolink:MolecularActivityToPathwayAssociation . - -biolink:MortalityOutcome a sh:NodeShape ; - sh:closed true ; - sh:description "An outcome of death from resulting from an exposure event." ; - sh:ignoredProperties ( rdf:type ) ; - sh:targetClass biolink:MortalityOutcome . - -biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation a sh:NodeShape ; - rdfs:subClassOf biolink:Association ; - sh:closed true ; - sh:description "" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:order 19 ; + sh:path biolink:original_subject ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 17 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; @@ -17932,63 +18856,34 @@ biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation a sh:NodeShape sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:qualifiers ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 35 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 42 ; sh:path biolink:deprecated ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 17 ; - sh:path biolink:agent_type ], + sh:order 41 ; + sh:path biolink:has_attribute ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category ], + sh:order 32 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -17996,22 +18891,17 @@ biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation a sh:NodeShape sh:nodeKind sh:IRI ; sh:order 4 ; sh:path rdf:object ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 41 ; - sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:object_context_qualifier ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:adjusted_p_value ], + sh:order 37 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; @@ -18019,151 +18909,51 @@ biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation a sh:NodeShape sh:order 14 ; sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:p_value ], + sh:order 34 ; + sh:path biolink:adjusted_p_value ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:subject_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path rdf:type ], + sh:order 27 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:anyURI ; sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 20 ; sh:path biolink:original_predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 11 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:subject_context_qualifier ], + sh:order 28 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:object_label_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category ], + sh:order 40 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:negated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path rdfs:label ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 16 ; - sh:path biolink:knowledge_level ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:category ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:population_context_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:object_closure ] ; + sh:order 39 ; + sh:path rdfs:label ] ; sh:targetClass biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation . biolink:NucleicAcidSequenceMotif a sh:NodeShape ; @@ -18171,26 +18961,15 @@ biolink:NucleicAcidSequenceMotif a sh:NodeShape ; sh:closed true ; sh:description "A linear nucleotide sequence pattern that is widespread and has, or is conjectured to have, a biological significance. e.g. the TATA box promoter motif, transcription factor binding consensus sequences." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + sh:property [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 9 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 5 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -18198,51 +18977,68 @@ biolink:NucleicAcidSequenceMotif a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], + sh:order 11 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 3 ; - sh:path biolink:xref ] ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:NucleicAcidSequenceMotif . biolink:NucleosomeModification a sh:NodeShape ; @@ -18250,83 +19046,90 @@ biolink:NucleosomeModification a sh:NodeShape ; sh:closed true ; sh:description "A chemical modification of a histone protein within a nucleosome octomer or a substitution of a histone with a variant histone isoform. e.g. Histone 4 Lysine 20 methylation (H4K20me), histone variant H2AZ substituting H2A." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:iri ], + sh:order 5 ; + sh:path biolink:full_name ], [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:category ], + sh:order 7 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "connects a genomic feature to its sequence" ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], + sh:order 8 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:in_taxon_label ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:in_taxon ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path dct:description ], + sh:order 0 ; + sh:path biolink:has_biological_sequence ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:in_taxon_label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:synonym ], [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:xref ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:full_name ], + sh:order 9 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:id ] ; + sh:order 12 ; + sh:path dct:description ] ; sh:targetClass biolink:NucleosomeModification . biolink:ObservedExpectedFrequencyAnalysisResult a sh:NodeShape ; @@ -18340,28 +19143,55 @@ biolink:ObservedExpectedFrequencyAnalysisResult a sh:NodeShape ; sh:order 4 ; sh:path biolink:provided_by ], [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 8 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:format ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; @@ -18371,8 +19201,8 @@ biolink:ObservedExpectedFrequencyAnalysisResult a sh:NodeShape ; [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:license ], + sh:order 1 ; + sh:path biolink:rights ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -18380,62 +19210,41 @@ biolink:ObservedExpectedFrequencyAnalysisResult a sh:NodeShape ; sh:order 15 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 0 ; + sh:path biolink:license ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 5 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:iri ] ; + sh:path biolink:xref ] ; sh:targetClass biolink:ObservedExpectedFrequencyAnalysisResult . biolink:OrganismTaxonToEntityAssociation a sh:NodeShape ; sh:closed false ; sh:description "An association between an organism taxon and another entity" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; + sh:property [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OrganismTaxon ; sh:description "organism taxon that is the subject of the association" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -18449,160 +19258,164 @@ biolink:OrganismTaxonToEnvironmentAssociation a sh:NodeShape ; rdfs:subClassOf biolink:Association ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:property [ sh:class biolink:OrganismTaxon ; + sh:description "the taxon that is the subject of the association" ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], + sh:order 35 ; + sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], + sh:order 25 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; sh:order 33 ; sh:path rdf:type ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 28 ; + sh:path biolink:p_value ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 26 ; sh:path biolink:object_label_closure ], - [ sh:class biolink:NamedThing ; - sh:description "the environment in which the organism occurs" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:description "a point in time" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OrganismTaxon ; - sh:description "the taxon that is the subject of the association" ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "predicate describing the relationship between the taxon and the environment" ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:NamedThing ; + sh:description "the environment in which the organism occurs" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -18611,10 +19424,17 @@ biolink:OrganismTaxonToEnvironmentAssociation a sh:NodeShape ; sh:order 11 ; sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -18622,48 +19442,42 @@ biolink:OrganismTaxonToEnvironmentAssociation a sh:NodeShape ; sh:order 17 ; sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], + sh:order 31 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "predicate describing the relationship between the taxon and the environment" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ] ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:negated ] ; sh:targetClass biolink:OrganismTaxonToEnvironmentAssociation . biolink:OrganismTaxonToOrganismTaxonInteraction a sh:NodeShape ; @@ -18671,168 +19485,142 @@ biolink:OrganismTaxonToOrganismTaxonInteraction a sh:NodeShape ; sh:closed true ; sh:description "An interaction relationship between two taxa. This may be a symbiotic relationship (encompassing mutualism and parasitism), or it may be non-symbiotic. Example: plague transmitted_by flea; cattle domesticated_by Homo sapiens; plague infects Homo sapiens" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:p_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], + sh:order 20 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path dct:description ], + sh:order 24 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:negated ], [ sh:datatype xsd:anyURI ; sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 16 ; sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:adjusted_p_value ], + sh:order 35 ; + sh:path rdfs:label ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_subject ], + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 23 ; sh:path biolink:object_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:agent_type ], + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 17 ; sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "the environment in which the two taxa interact" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "the taxon that is the subject of the association" ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:associated_environmental_context ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:object_closure ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:id ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:subject_closure ], + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 27 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:OrganismTaxon ; sh:description "the taxon that is the subject of the association" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], + sh:order 3 ; + sh:path rdf:object ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 37 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -18843,27 +19631,27 @@ biolink:OrganismTaxonToOrganismTaxonInteraction a sh:NodeShape ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:description "a point in time" ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OrganismTaxon ; - sh:description "the taxon that is the subject of the association" ; + sh:order 36 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:id ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:knowledge_level ], + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:p_value ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; @@ -18876,304 +19664,316 @@ biolink:OrganismTaxonToOrganismTaxonInteraction a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 25 ; sh:path biolink:object_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:category ] ; - sh:targetClass biolink:OrganismTaxonToOrganismTaxonInteraction . - -biolink:OrganismTaxonToOrganismTaxonSpecialization a sh:NodeShape ; - rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonAssociation ; - sh:closed true ; - sh:description "A child-parent relationship between two taxa. For example: Homo sapiens subclass_of Homo" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:order 5 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 34 ; + sh:path rdf:type ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 32 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "the environment in which the two taxa interact" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:associated_environmental_context ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path biolink:category ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OrganismTaxon ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:knowledge_level ] ; + sh:targetClass biolink:OrganismTaxonToOrganismTaxonInteraction . + +biolink:OrganismTaxonToOrganismTaxonSpecialization a sh:NodeShape ; + rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonAssociation ; + sh:closed true ; + sh:description "A child-parent relationship between two taxa. For example: Homo sapiens subclass_of Homo" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OrganismTaxon ; sh:description "the more general taxon" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; sh:order 33 ; sh:path rdf:type ], - [ sh:class biolink:OrganismTaxon ; - sh:description "the more specific taxon" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 23 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], + sh:order 18 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OrganismTaxon ; + sh:description "the more specific taxon" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:description "a point in time" ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 28 ; sh:path biolink:p_value ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 35 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ] ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:id ] ; sh:targetClass biolink:OrganismTaxonToOrganismTaxonSpecialization . biolink:OrganismToOrganismAssociation a sh:NodeShape ; rdfs:subClassOf biolink:Association ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 35 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -19188,72 +19988,34 @@ biolink:OrganismToOrganismAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:knowledge_level ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:IndividualOrganism ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:description "a point in time" ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:timepoint ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 33 ; + sh:path rdf:type ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -19261,57 +20023,22 @@ biolink:OrganismToOrganismAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 12 ; sh:path biolink:agent_type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 28 ; + sh:path biolink:p_value ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; sh:order 32 ; sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:class biolink:IndividualOrganism ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; @@ -19319,214 +20046,330 @@ biolink:OrganismToOrganismAssociation a sh:NodeShape ; sh:order 29 ; sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:IndividualOrganism ; sh:description "An association between two individual organisms." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path rdf:object ] ; - sh:targetClass biolink:OrganismToOrganismAssociation . - -biolink:OrganismalEntityAsAModelOfDiseaseAssociation a sh:NodeShape ; - rdfs:subClassOf biolink:Association ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:path rdf:object ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 23 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:OrganismalEntity ; - sh:description "A organismal entity (strain, breed) with a predisposition to a disease, or bred/created specifically to model a disease." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 36 ; sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 14 ; + sh:path biolink:original_subject ] ; + sh:targetClass biolink:OrganismToOrganismAssociation . + +biolink:OrganismalEntityAsAModelOfDiseaseAssociation a sh:NodeShape ; + rdfs:subClassOf biolink:Association ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 38 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], + sh:order 42 ; + sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:object_category ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 41 ; sh:path biolink:object_direction_qualifier ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 39 ; sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 43 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:description "The relationship to the disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 31 ; + sh:path biolink:iri ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:p_value ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OrganismalEntity ; + sh:description "A organismal entity (strain, breed) with a predisposition to a disease, or bred/created specifically to model a disease." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:subject_category ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 37 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 40 ; sh:path biolink:object_aspect_qualifier ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:description "a human-readable description of an entity" ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; @@ -19534,11 +20377,12 @@ biolink:OrganismalEntityAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:order 8 ; sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "The relationship to the disease" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:qualified_predicate ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -19546,50 +20390,40 @@ biolink:OrganismalEntityAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 12 ; sh:path biolink:agent_type ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Disease ; - sh:description "disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 33 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ] ; + sh:order 35 ; + sh:path dct:description ] ; sh:targetClass biolink:OrganismalEntityAsAModelOfDiseaseAssociation . biolink:PairwiseMolecularInteraction a sh:NodeShape ; @@ -19597,226 +20431,231 @@ biolink:PairwiseMolecularInteraction a sh:NodeShape ; sh:closed true ; sh:description "An interaction at the molecular level between two physical entities" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:deprecated ], - [ sh:class biolink:MolecularEntity ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:property [ sh:class biolink:OntologyClass ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 0 ; + sh:path biolink:interacting_molecules_category ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 35 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 32 ; sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:MolecularEntity ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:subject_closure ], + sh:order 1 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdf:type ], + sh:order 24 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path dct:description ], + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 17 ; sh:path biolink:original_object ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "identifier for the interaction. This may come from an interaction database such as IMEX." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 38 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 37 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:p_value ], + sh:order 25 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:original_subject ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:MolecularEntity ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], + sh:order 3 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "identifier for the interaction. This may come from an interaction database such as IMEX." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 31 ; + sh:path biolink:id ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:MolecularEntity ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], + sh:order 12 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:subject_namespace ], + sh:order 36 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 34 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 30 ; + sh:path biolink:adjusted_p_value ], [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:knowledge_level ], - [ sh:class biolink:OntologyClass ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:interacting_molecules_category ], - [ sh:description "interaction relationship type" ; + sh:order 13 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; + sh:order 29 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:timepoint ], + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "interaction relationship type" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:qualifier ], + sh:order 27 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ] ; + sh:order 14 ; + sh:path biolink:timepoint ] ; sh:targetClass biolink:PairwiseMolecularInteraction . biolink:Patent a sh:NodeShape ; @@ -19824,78 +20663,105 @@ biolink:Patent a sh:NodeShape ; sh:closed true ; sh:description "a legal document granted by a patent issuing authority which confers upon the patenter the sole right to make, use and sell an invention for a set period of time." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:property [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:category ], + sh:order 19 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:pages ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:summary ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 21 ; sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:format ], + sh:order 15 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:summary ], + sh:order 6 ; + sh:path dct:type ], [ sh:class biolink:Agent ; sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:authors ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:rights ], + sh:order 7 ; + sh:path biolink:license ], [ sh:datatype xsd:anyURI ; sh:description "mesh terms tagging a publication" ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:mesh_terms ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:synonym ], + sh:order 8 ; + sh:path biolink:rights ], [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:creation_date ], - [ sh:description "a human-readable description of an entity" ; + sh:order 16 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path dct:description ], + sh:order 9 ; + sh:path biolink:format ], [ sh:datatype xsd:string ; + sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_attribute ], + sh:order 18 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; @@ -19903,42 +20769,20 @@ biolink:Patent a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:id ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:pages ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "keywords tagging a publication" ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:keywords ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path dct:type ], + sh:order 17 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:license ] ; + sh:order 11 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:Patent . biolink:PathognomonicityQuantifier a sh:NodeShape ; @@ -19953,91 +20797,97 @@ biolink:PathologicalAnatomicalExposure a sh:NodeShape ; sh:closed true ; sh:description "An abnormal anatomical structure, when viewed as an exposure, representing an precondition, leading to or influencing an outcome, e.g. thrombosis leading to an ischemic disease outcome." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:id ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:full_name ], + sh:order 1 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a point in time" ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:timepoint ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:provided_by ], + sh:order 5 ; + sh:path biolink:iri ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNodeOrIRI ; sh:order 3 ; sh:path biolink:has_quantitative_value ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:category ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdfs:label ] ; + sh:order 13 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:PathologicalAnatomicalExposure . biolink:PathologicalAnatomicalOutcome a sh:NodeShape ; @@ -20051,36 +20901,61 @@ biolink:PathologicalAnatomicalStructure a sh:NodeShape ; sh:closed true ; sh:description "An anatomical structure with the potential of have an abnormal or deleterious effect at the subcellular, cellular, multicellular, or organismal level." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; + sh:property [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -20094,35 +20969,16 @@ biolink:PathologicalAnatomicalStructure a sh:NodeShape ; sh:order 8 ; sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ] ; + sh:order 10 ; + sh:path rdfs:label ] ; sh:targetClass biolink:PathologicalAnatomicalStructure . biolink:PathologicalEntityMixin a sh:NodeShape ; @@ -20136,93 +20992,99 @@ biolink:PathologicalProcess a sh:NodeShape ; sh:closed true ; sh:description "A biologic function or a process having an abnormal or deleterious effect at the subcellular, cellular, multicellular, or organismal level." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:in_taxon_label ], + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path rdf:type ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 2 ; + sh:path biolink:has_output ], + [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:enabled_by ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path rdfs:label ], + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 5 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:iri ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 16 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_output ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:enabled_by ], + sh:order 15 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:id ] ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_input ] ; sh:targetClass biolink:PathologicalProcess . biolink:PathologicalProcessExposure a sh:NodeShape ; @@ -20230,74 +21092,60 @@ biolink:PathologicalProcessExposure a sh:NodeShape ; sh:closed true ; sh:description "A pathological process, when viewed as an exposure, representing a precondition, leading to or influencing an outcome, e.g. autoimmunity leading to disease." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:property [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path rdfs:label ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:provided_by ], + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "a point in time" ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:timepoint ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -20305,16 +21153,36 @@ biolink:PathologicalProcessExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_attribute_type ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:synonym ], + sh:order 11 ; + sh:path biolink:category ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; - sh:path biolink:deprecated ] ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path dct:description ] ; sh:targetClass biolink:PathologicalProcessExposure . biolink:PathologicalProcessOutcome a sh:NodeShape ; @@ -20328,12 +21196,37 @@ biolink:Phenomenon a sh:NodeShape ; sh:closed true ; sh:description "a fact or situation that is observed to exist or happen, especially one whose cause or explanation is in question" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; + sh:property [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; @@ -20344,258 +21237,209 @@ biolink:Phenomenon a sh:NodeShape ; sh:order 0 ; sh:path biolink:provided_by ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path rdf:type ] ; + sh:order 5 ; + sh:path biolink:iri ] ; sh:targetClass biolink:Phenomenon . biolink:PhenotypicFeatureToDiseaseAssociation a sh:NodeShape ; rdfs:subClassOf biolink:Association ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:property [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:category ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:subject_namespace ], + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 45 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:order 40 ; + sh:path biolink:has_total ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], + sh:order 1 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_object ], + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 36 ; + sh:path dct:description ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path rdfs:label ], + sh:order 48 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 27 ; sh:path biolink:object_label_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 46 ; - sh:path biolink:object_direction_qualifier ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:order 35 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:object_closure ], + sh:order 38 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:order 42 ; + sh:path biolink:has_percentage ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:double ; + sh:order 30 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:knowledge_level ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:iri ], + sh:order 45 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path rdf:type ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 29 ; sh:path biolink:p_value ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:has_percentage ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], + sh:order 32 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:sex_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:order 3 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -20603,166 +21447,201 @@ biolink:PhenotypicFeatureToDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 31 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path dct:description ], - [ sh:description "a point in time" ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:timepoint ], + sh:order 39 ; + sh:path biolink:has_count ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdf:type ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path biolink:has_total ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 43 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 48 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:agent_type ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 46 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path biolink:has_count ], + sh:order 16 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 47 ; - sh:path biolink:qualified_predicate ], + sh:order 15 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:deprecated ], + sh:order 33 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ] ; - sh:targetClass biolink:PhenotypicFeatureToDiseaseAssociation . - -biolink:PhenotypicFeatureToEntityAssociationMixin a sh:NodeShape ; - rdfs:subClassOf biolink:FeatureOrDiseaseQualifiersToEntityMixin ; - sh:closed false ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path rdf:subject ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 37 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:has_total ], + sh:order 47 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 24 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:sex_qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path rdf:object ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:object_direction_qualifier ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 44 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 41 ; + sh:path biolink:has_quotient ] ; + sh:targetClass biolink:PhenotypicFeatureToDiseaseAssociation . + +biolink:PhenotypicFeatureToEntityAssociationMixin a sh:NodeShape ; + rdfs:subClassOf biolink:FeatureOrDiseaseQualifiersToEntityMixin ; + sh:closed false ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:has_percentage ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path rdf:predicate ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:order 7 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:has_percentage ], + sh:order 5 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 2 ; + sh:path biolink:has_total ], [ sh:datatype xsd:double ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:has_quotient ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:subject_direction_qualifier ] ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:has_count ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 11 ; + sh:path rdf:subject ] ; sh:targetClass biolink:PhenotypicFeatureToEntityAssociationMixin . biolink:PhenotypicFeatureToPhenotypicFeatureAssociation a sh:NodeShape ; @@ -20770,208 +21649,188 @@ biolink:PhenotypicFeatureToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "Association between two concept nodes of phenotypic character, qualified by the predicate used. This association may typically be used to specify 'similar_to' or 'member_of' relationships." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdf:type ], + sh:order 43 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:double ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:sex_qualifier ], + sh:order 41 ; + sh:path biolink:has_quotient ], [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:subject_direction_qualifier ], + sh:order 3 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 45 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path biolink:has_count ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 46 ; - sh:path biolink:object_direction_qualifier ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_evidence ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_label_closure ], + sh:order 2 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:knowledge_level ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:nodeKind sh:Literal ; + sh:order 47 ; + sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 48 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:double ; + sh:order 36 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path biolink:has_quotient ], + sh:order 45 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 40 ; sh:path biolink:has_total ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 42 ; + sh:path biolink:has_percentage ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], + sh:order 37 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 35 ; + sh:path rdfs:label ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; + sh:order 46 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 34 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path dct:description ], + sh:order 25 ; + sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], + sh:order 1 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 39 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -20980,74 +21839,99 @@ biolink:PhenotypicFeatureToPhenotypicFeatureAssociation a sh:NodeShape ; sh:order 31 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:qualifier ], + sh:order 27 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:anyURI ; sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 16 ; sh:path biolink:original_predicate ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:p_value ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:subject_closure ], + sh:order 48 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:has_percentage ], + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 21 ; sh:path biolink:object_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 47 ; - sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 38 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path rdf:predicate ], + sh:order 30 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:adjusted_p_value ] ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:subject_closure ] ; sh:targetClass biolink:PhenotypicFeatureToPhenotypicFeatureAssociation . biolink:PhenotypicQuality a sh:NodeShape ; @@ -21055,50 +21939,57 @@ biolink:PhenotypicQuality a sh:NodeShape ; sh:closed true ; sh:description "A property of a phenotype" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], + sh:order 8 ; + sh:path biolink:full_name ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -21106,35 +21997,33 @@ biolink:PhenotypicQuality a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], + sh:order 0 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ] ; + sh:order 9 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:PhenotypicQuality . biolink:PhenotypicSex a sh:NodeShape ; @@ -21142,16 +22031,40 @@ biolink:PhenotypicSex a sh:NodeShape ; sh:closed true ; sh:description "An attribute corresponding to the phenotypic sex of the individual, based upon the reproductive organs present." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; @@ -21159,69 +22072,50 @@ biolink:PhenotypicSex a sh:NodeShape ; sh:order 3 ; sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], + sh:order 0 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:iri ], + sh:order 5 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ] ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path rdf:type ] ; sh:targetClass biolink:PhenotypicSex . biolink:PhysicalEssence a sh:NodeShape ; @@ -21235,47 +22129,72 @@ biolink:PhysiologicalProcess a sh:NodeShape ; rdfs:subClassOf biolink:BiologicalProcess ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:property [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ], + sh:order 12 ; + sh:path rdf:type ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_input ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 16 ; sh:path biolink:deprecated ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:in_taxon_label ], + sh:order 10 ; + sh:path biolink:iri ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:enabled_by ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; @@ -21292,36 +22211,17 @@ biolink:PhysiologicalProcess a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:enabled_by ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ] ; + sh:order 5 ; + sh:path biolink:in_taxon_label ] ; sh:targetClass biolink:PhysiologicalProcess . biolink:Plant a sh:NodeShape ; @@ -21329,25 +22229,17 @@ biolink:Plant a sh:NodeShape ; sh:closed true ; sh:description "" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:in_taxon_label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -21355,52 +22247,66 @@ biolink:Plant a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ] ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:xref ] ; sh:targetClass biolink:Plant . biolink:PopulationToPopulationAssociation a sh:NodeShape ; @@ -21408,138 +22314,111 @@ biolink:PopulationToPopulationAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a two populations" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:subject_category ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "the population that form the object of the association" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a point in time" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], + sh:order 37 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "A relationship type that holds between the subject and object populations. Standard mereological relations can be used. E.g. subject part-of object, subject overlaps object. Derivation relationships can also be used" ; + sh:description "A relationship type that holds between the subject and object populations. Standard mereological relations can be used. E.g. subject part-of object, subject overlaps object. Derivation relationships can also be used" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; sh:order 32 ; sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "the population that form the subject of the association" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 33 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; @@ -21547,60 +22426,95 @@ biolink:PopulationToPopulationAssociation a sh:NodeShape ; sh:order 4 ; sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "a point in time" ; + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "the population that form the object of the association" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -21608,21 +22522,18 @@ biolink:PopulationToPopulationAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:knowledge_level ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "the population that form the subject of the association" ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ] ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ] ; sh:targetClass biolink:PopulationToPopulationAssociation . biolink:PosttranslationalModification a sh:NodeShape ; @@ -21630,38 +22541,69 @@ biolink:PosttranslationalModification a sh:NodeShape ; sh:closed true ; sh:description "A chemical modification of a polypeptide or protein that occurs after translation. e.g. polypeptide cleavage to form separate proteins, methylation or acetylation of histone tail amino acids, protein ubiquitination." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; @@ -21671,37 +22613,12 @@ biolink:PosttranslationalModification a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ] ; + sh:order 1 ; + sh:path biolink:in_taxon_label ] ; sh:targetClass biolink:PosttranslationalModification . biolink:PreprintPublication a sh:NodeShape ; @@ -21715,173 +22632,161 @@ biolink:PreprintPublication a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path dct:type ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:anyURI ; - sh:description "mesh terms tagging a publication" ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:mesh_terms ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:license ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:full_name ], + sh:order 3 ; + sh:path biolink:keywords ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:format ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:summary ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:keywords ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:pages ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:category ], + sh:order 14 ; + sh:path biolink:id ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:creation_date ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 21 ; sh:path biolink:deprecated ], + [ sh:datatype xsd:anyURI ; + sh:description "mesh terms tagging a publication" ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:mesh_terms ], [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:rights ], + sh:order 15 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path rdf:type ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 18 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_attribute ], [ sh:class biolink:Agent ; sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:authors ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:provided_by ] ; - sh:targetClass biolink:PreprintPublication . - -biolink:ProcessRegulatesProcessAssociation a sh:NodeShape ; - rdfs:subClassOf biolink:Association ; - sh:closed true ; - sh:description "Describes a regulatory relationship between two genes or gene products." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 2 ; + sh:path biolink:summary ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:class biolink:BiologicalProcess ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:rights ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path dct:description ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 33 ; + sh:order 17 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:description "a point in time" ; + sh:order 1 ; + sh:path biolink:pages ] ; + sh:targetClass biolink:PreprintPublication . + +biolink:ProcessRegulatesProcessAssociation a sh:NodeShape ; + rdfs:subClassOf biolink:Association ; + sh:closed true ; + sh:description "Describes a regulatory relationship between two genes or gene products." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; @@ -21894,24 +22799,22 @@ biolink:ProcessRegulatesProcessAssociation a sh:NodeShape ; sh:order 37 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -21919,133 +22822,157 @@ biolink:ProcessRegulatesProcessAssociation a sh:NodeShape ; sh:order 23 ; sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 35 ; + sh:path dct:description ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:order 33 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 34 ; + sh:path rdfs:label ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:BiologicalProcess ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 29 ; sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:p_value ], [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:anyURI ; sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; sh:order 32 ; sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:BiologicalProcess ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ] ; + sh:order 18 ; + sh:path biolink:object_category ] ; sh:targetClass biolink:ProcessRegulatesProcessAssociation . biolink:ProcessedMaterial a sh:NodeShape ; @@ -22053,11 +22980,7 @@ biolink:ProcessedMaterial a sh:NodeShape ; sh:closed true ; sh:description "A chemical entity (often a mixture) processed for consumption for nutritional, medical or technical use. Is a material entity that is created or changed during material processing." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ], - [ sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:property [ sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; sh:maxCount 1 ; sh:order 2 ; @@ -22068,90 +22991,86 @@ biolink:ProcessedMaterial a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 18 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:max_tolerated_dose ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], + [ sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], [ sh:datatype xsd:string ; - sh:description "" ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:trade_name ], + sh:order 11 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:iri ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:id ], + sh:order 4 ; + sh:path biolink:trade_name ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:is_toxic ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:is_supplement ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path biolink:synonym ], - [ sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; - sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path rdfs:label ], + sh:order 20 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; + sh:order 17 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:is_supplement ], + sh:order 7 ; + sh:path biolink:is_toxic ], [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; @@ -22161,7 +23080,20 @@ biolink:ProcessedMaterial a sh:NodeShape ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 10 ; - sh:path biolink:xref ] ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:id ] ; sh:targetClass biolink:ProcessedMaterial . biolink:ProteinDomain a sh:NodeShape ; @@ -22169,27 +23101,67 @@ biolink:ProteinDomain a sh:NodeShape ; sh:closed true ; sh:description "A conserved part of protein sequence and (tertiary) structure that can evolve, function, and exist independently of the rest of the protein chain. Protein domains maintain their structure and function independently of the proteins in which they are found. e.g. an SH3 domain." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 3 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path rdfs:label ], + [ sh:class biolink:Gene ; + sh:description "connects an entity with one or more gene or gene products" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_gene_or_gene_product ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; @@ -22201,46 +23173,12 @@ biolink:ProteinDomain a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:category ], - [ sh:class biolink:Gene ; - sh:description "connects an entity with one or more gene or gene products" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_gene_or_gene_product ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -22252,79 +23190,85 @@ biolink:ProteinFamily a sh:NodeShape ; rdfs:subClassOf biolink:BiologicalEntity ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], + sh:property [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:full_name ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path dct:description ], + sh:order 7 ; + sh:path biolink:id ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdfs:label ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:id ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:in_taxon_label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:class biolink:Gene ; sh:description "connects an entity with one or more gene or gene products" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:has_gene_or_gene_product ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; @@ -22336,27 +23280,12 @@ biolink:ProteinIsoform a sh:NodeShape ; sh:closed true ; sh:description "Represents a protein that is a specific isoform of the canonical or reference protein. See https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114032/" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:anyURI ; + sh:property [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -22364,50 +23293,71 @@ biolink:ProteinIsoform a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:in_taxon_label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "a human-readable description of an entity" ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path dct:description ], [ sh:datatype xsd:string ; + sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ] ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:ProteinIsoform . biolink:RNAProductIsoform a sh:NodeShape ; @@ -22415,78 +23365,84 @@ biolink:RNAProductIsoform a sh:NodeShape ; sh:closed true ; sh:description "Represents a protein that is a specific isoform of the canonical or reference RNA" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 8 ; + sh:path biolink:category ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:full_name ], + sh:order 10 ; + sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:synonym ], + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ] ; + sh:path biolink:id ] ; sh:targetClass biolink:RNAProductIsoform . biolink:ReactionToCatalystAssociation a sh:NodeShape ; @@ -22494,236 +23450,241 @@ biolink:ReactionToCatalystAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path rdf:type ], - [ sh:class biolink:MolecularEntity ; - sh:description "the chemical entity or entity that is an interactor" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:integer ; - sh:description "the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers." ; + sh:order 22 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:stoichiometry ], + sh:order 18 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path biolink:category ], + sh:order 36 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 19 ; sh:path biolink:original_object ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:qualifier ], + sh:order 17 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:object_category_closure ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:adjusted_p_value ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_namespace ], + sh:order 33 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 28 ; sh:path biolink:subject_label_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path dct:description ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path rdf:predicate ], + sh:order 16 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 24 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 22 ; - sh:path biolink:subject_closure ], - [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; - sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:reaction_direction ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 37 ; + sh:path rdfs:label ], + [ sh:class biolink:MolecularEntity ; + sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category ], - [ sh:description "the side of a reaction being modeled (ie: left or right)" ; - sh:in ( "left" "right" ) ; + sh:order 3 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:reaction_side ], + sh:nodeKind sh:Literal ; + sh:order 27 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:original_predicate ], + sh:order 35 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_subject ], + sh:order 26 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 29 ; sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the chemical element that is the target of the statement" ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:knowledge_source ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 5 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; + sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:agent_type ], + sh:order 1 ; + sh:path biolink:reaction_direction ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 39 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:adjusted_p_value ], + sh:order 31 ; + sh:path biolink:p_value ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 40 ; sh:path biolink:deprecated ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 23 ; sh:path biolink:object_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:qualifiers ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the chemical element that is the target of the statement" ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 5 ; - sh:path rdf:object ], + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:negated ], + [ sh:datatype xsd:integer ; + sh:description "the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:stoichiometry ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_namespace ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:order 38 ; + sh:path dct:description ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 30 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 14 ; - sh:path biolink:knowledge_level ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path rdfs:label ] ; + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:description "the side of a reaction being modeled (ie: left or right)" ; + sh:in ( "left" "right" ) ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:reaction_side ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ] ; sh:targetClass biolink:ReactionToCatalystAssociation . biolink:ReagentTargetedGene a sh:NodeShape ; @@ -22731,43 +23692,66 @@ biolink:ReagentTargetedGene a sh:NodeShape ; sh:closed true ; sh:description "A gene altered in its expression level in the context of some experiment as a result of being targeted by gene-knockdown reagent(s) such as a morpholino or RNAi." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:datatype xsd:string ; + sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:iri ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -22775,39 +23759,23 @@ biolink:ReagentTargetedGene a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:provided_by ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:synonym ] ; + sh:order 11 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:ReagentTargetedGene . biolink:RelationshipType a sh:NodeShape ; @@ -22829,47 +23797,56 @@ biolink:RelativeFrequencyAnalysisResult a sh:NodeShape ; sh:closed true ; sh:description "A result of a relative frequency analysis." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], + sh:order 8 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:full_name ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:creation_date ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:iri ], + sh:order 2 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; @@ -22878,40 +23855,36 @@ biolink:RelativeFrequencyAnalysisResult a sh:NodeShape ; [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:license ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:rights ] ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:category ] ; sh:targetClass biolink:RelativeFrequencyAnalysisResult . biolink:SensitivityQuantifier a sh:NodeShape ; @@ -22926,56 +23899,85 @@ biolink:SequenceVariantModulatesTreatmentAssociation a sh:NodeShape ; sh:description "An association between a sequence variant and a treatment or health intervention. The treatment object itself encompasses both the disease and the drug used." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:original_subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 35 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; @@ -22988,37 +23990,45 @@ biolink:SequenceVariantModulatesTreatmentAssociation a sh:NodeShape ; sh:order 4 ; sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:description "a point in time" ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 37 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:SequenceVariant ; + sh:description "variant that modulates the treatment of some disease" ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -23026,6 +24036,12 @@ biolink:SequenceVariantModulatesTreatmentAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 12 ; sh:path biolink:agent_type ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:p_value ], [ sh:class biolink:Treatment ; sh:description "treatment whose efficacy is modulated by the subject variant" ; sh:maxCount 1 ; @@ -23034,35 +24050,28 @@ biolink:SequenceVariantModulatesTreatmentAssociation a sh:NodeShape ; sh:order 2 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:class biolink:SequenceVariant ; - sh:description "variant that modulates the treatment of some disease" ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -23070,76 +24079,45 @@ biolink:SequenceVariantModulatesTreatmentAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:knowledge_level ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; sh:order 33 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:description "a human-readable description of an entity" ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 31 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ] ; + sh:order 30 ; + sh:path biolink:id ] ; sh:targetClass biolink:SequenceVariantModulatesTreatmentAssociation . biolink:Serial a sh:NodeShape ; @@ -23147,101 +24125,116 @@ biolink:Serial a sh:NodeShape ; sh:closed true ; sh:description "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:provided_by ], + sh:order 19 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; + sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:rights ], + sh:order 21 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:keywords ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:iri ], + sh:order 22 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:pages ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:authors ], [ sh:datatype xsd:string ; sh:description "executive summary of a publication" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:summary ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; + sh:description "Standard abbreviation for periodicals in the International Organization for Standardization (ISO) 4 system See https://www.issn.org/services/online-services/access-to-the-ltwa/. If the 'published in' property is set, then the iso abbreviation pertains to the broader publication context (the journal) within which the given publication node is embedded, not the publication itself." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:license ], + sh:order 0 ; + sh:path biolink:iso_abbreviation ], [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:format ], + sh:order 15 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path dct:type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 22 ; - sh:path dct:description ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:order 11 ; + sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:creation_date ], + sh:order 18 ; + sh:path biolink:iri ], [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "mesh terms tagging a publication" ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:xref ], + sh:order 7 ; + sh:path biolink:mesh_terms ], [ sh:datatype xsd:string ; - sh:description "Standard abbreviation for periodicals in the International Organization for Standardization (ISO) 4 system See https://www.issn.org/services/online-services/access-to-the-ltwa/. If the 'published in' property is set, then the iso abbreviation pertains to the broader publication context (the journal) within which the given publication node is embedded, not the publication itself." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:iso_abbreviation ], + sh:order 10 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; - sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; - sh:maxCount 1 ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:issue ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:full_name ], + sh:order 16 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:keywords ], [ sh:datatype xsd:string ; sh:description "Should generally be set to an ontology class defined term for 'serial' or 'journal'." ; sh:nodeKind sh:Literal ; sh:order 20 ; sh:path rdf:type ], - [ sh:datatype xsd:anyURI ; - sh:description "mesh terms tagging a publication" ; + [ sh:datatype xsd:string ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:mesh_terms ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:format ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:synonym ], + sh:order 13 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "Serials (journals) should have industry-standard identifier such as from ISSN." ; sh:maxCount 1 ; @@ -23249,38 +24242,28 @@ biolink:Serial a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 17 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:issue ], [ sh:datatype xsd:string ; sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:volume ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:authors ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 23 ; - sh:path biolink:has_attribute ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:pages ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:deprecated ] ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:Serial . biolink:SeverityValue a sh:NodeShape ; @@ -23288,86 +24271,91 @@ biolink:SeverityValue a sh:NodeShape ; sh:closed true ; sh:description "describes the severity of a phenotypic feature or disease" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], + sh:order 0 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path rdf:type ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path dct:description ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path dct:description ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path rdfs:label ] ; + sh:order 4 ; + sh:path biolink:iri ] ; sh:targetClass biolink:SeverityValue . biolink:SiRNA a sh:NodeShape ; @@ -23375,27 +24363,38 @@ biolink:SiRNA a sh:NodeShape ; sh:closed true ; sh:description "A small RNA molecule that is the product of a longer exogenous or endogenous dsRNA, which is either a bimolecular duplex or very long hairpin, processed (via the Dicer pathway) such that numerous siRNAs accumulate from both strands of the dsRNA. SRNAs trigger the cleavage of their target molecules." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 9 ; + sh:path rdf:type ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 3 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -23403,50 +24402,45 @@ biolink:SiRNA a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:in_taxon_label ] ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:xref ] ; sh:targetClass biolink:SiRNA . biolink:SmallMolecule a sh:NodeShape ; @@ -23455,84 +24449,72 @@ biolink:SmallMolecule a sh:NodeShape ; sh:description "A small molecule entity is a molecular entity characterized by availability in small-molecule databases of SMILES, InChI, IUPAC, or other unambiguous representation of its precise chemical structure; for convenience of representation, any valid chemical representation is included, even if it is not strictly molecular (e.g., sodium ion)." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path dct:description ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "" ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:is_toxic ], + sh:order 15 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:max_tolerated_dose ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 11 ; + sh:path biolink:iri ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:trade_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:has_attribute ], + sh:order 17 ; + sh:path biolink:deprecated ], [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:has_chemical_role ], - [ sh:datatype xsd:boolean ; - sh:description "indicates whether a molecular entity is a metabolite" ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:is_metabolite ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 13 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:deprecated ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 2 ; - sh:path biolink:available_from ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 3 ; + sh:path biolink:max_tolerated_dose ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; @@ -23544,11 +24526,28 @@ biolink:SmallMolecule a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:boolean ; + sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:iri ] ; + sh:order 4 ; + sh:path biolink:is_toxic ], + [ sh:datatype xsd:string ; + sh:description "" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:trade_name ], + [ sh:datatype xsd:boolean ; + sh:description "indicates whether a molecular entity is a metabolite" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:is_metabolite ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 2 ; + sh:path biolink:available_from ] ; sh:targetClass biolink:SmallMolecule . biolink:Snv a sh:NodeShape ; @@ -23556,88 +24555,95 @@ biolink:Snv a sh:NodeShape ; sh:closed true ; sh:description "SNVs are single nucleotide positions in genomic DNA at which different sequence alternatives exist" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Gene ; - sh:description "Each allele can be associated with any number of genes" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_gene ], - [ sh:datatype xsd:anyURI ; + sh:property [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "The state of the sequence w.r.t a reference sequence" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:has_biological_sequence ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:in_taxon ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:full_name ], + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 4 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 7 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:provided_by ], + [ sh:class biolink:Gene ; + sh:description "Each allele can be associated with any number of genes" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_gene ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The state of the sequence w.r.t a reference sequence" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:has_biological_sequence ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path rdfs:label ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:in_taxon_label ] ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:id ] ; sh:targetClass biolink:Snv . biolink:SocioeconomicExposure a sh:NodeShape ; @@ -23645,17 +24651,23 @@ biolink:SocioeconomicExposure a sh:NodeShape ; sh:closed true ; sh:description "A socioeconomic exposure is a factor relating to social and financial status of an affected individual (e.g. poverty)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:iri ], - [ sh:class biolink:SocioeconomicAttribute ; - sh:description "connects any entity to an attribute" ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -23663,20 +24675,40 @@ biolink:SocioeconomicExposure a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path rdf:type ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -23684,53 +24716,33 @@ biolink:SocioeconomicExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_attribute_type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:full_name ], [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:category ], + sh:order 8 ; + sh:path biolink:xref ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], + [ sh:class biolink:SocioeconomicAttribute ; + sh:description "connects any entity to an attribute" ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:xref ] ; + sh:order 10 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:SocioeconomicExposure . biolink:SocioeconomicOutcome a sh:NodeShape ; @@ -23744,41 +24756,48 @@ biolink:Study a sh:NodeShape ; sh:closed true ; sh:description "a detailed investigation and/or analysis" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:xref ], + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 8 ; + sh:path rdfs:label ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path rdfs:label ], + sh:order 3 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -23786,22 +24805,20 @@ biolink:Study a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:synonym ], + sh:order 9 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; @@ -23813,84 +24830,89 @@ biolink:StudyVariable a sh:NodeShape ; sh:closed true ; sh:description "a variable that is used as a measure in the investigation of a study" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:format ], + sh:order 6 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 2 ; + sh:path biolink:format ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:iri ], + sh:order 12 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 1 ; + sh:path biolink:rights ], [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:license ], + sh:order 8 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:id ], + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; @@ -23908,102 +24930,103 @@ biolink:TaxonToTaxonAssociation a sh:NodeShape ; rdfs:subClassOf biolink:Association ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:description "a human-readable description of an entity" ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OrganismTaxon ; - sh:description "An association between individuals of different taxa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 31 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 23 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "a point in time" ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:OrganismTaxon ; + sh:description "An association between individuals of different taxa." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -24011,44 +25034,22 @@ biolink:TaxonToTaxonAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -24056,11 +25057,23 @@ biolink:TaxonToTaxonAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 12 ; sh:path biolink:agent_type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:p_value ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -24068,32 +25081,56 @@ biolink:TaxonToTaxonAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:knowledge_level ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -24101,22 +25138,12 @@ biolink:TaxonToTaxonAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 30 ; sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], + sh:order 35 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; @@ -24130,83 +25157,88 @@ biolink:TextMiningResult a sh:NodeShape ; sh:closed true ; sh:description "A result of text mining." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:synonym ], + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:rights ], [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:creation_date ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], + sh:order 0 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -24219,16 +25251,17 @@ biolink:ThingWithTaxon a sh:NodeShape ; sh:closed false ; sh:description "A mixin that can be used on any entity that can be taxonomically classified. This includes individual organisms; genes, their products and other molecular entities; body parts; biological processes" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; - sh:path biolink:in_taxon_label ] ; + sh:path biolink:in_taxon_label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ] ; sh:targetClass biolink:ThingWithTaxon . biolink:TranscriptToGeneRelationship a sh:NodeShape ; @@ -24236,74 +25269,42 @@ biolink:TranscriptToGeneRelationship a sh:NodeShape ; sh:closed true ; sh:description "A gene is a collection of transcripts" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a point in time" ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], + sh:order 18 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:class biolink:Transcript ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -24311,146 +25312,183 @@ biolink:TranscriptToGeneRelationship a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 37 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Gene ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; sh:order 32 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 23 ; sh:path biolink:subject_namespace ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Gene ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:nodeKind sh:Literal ; + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ] ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ] ; sh:targetClass biolink:TranscriptToGeneRelationship . biolink:TranscriptionFactorBindingSite a sh:NodeShape ; @@ -24459,54 +25497,56 @@ biolink:TranscriptionFactorBindingSite a sh:NodeShape ; sh:description "A region (or regions) of the genome that contains a region of DNA known or predicted to bind a protein that modulates gene transcription" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:order 6 ; + sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "connects a genomic feature to its sequence" ; + [ sh:datatype xsd:string ; + sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:has_biological_sequence ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:in_taxon_label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], + sh:order 9 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -24514,134 +25554,182 @@ biolink:TranscriptionFactorBindingSite a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path rdfs:label ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:full_name ] ; + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:xref ] ; sh:targetClass biolink:TranscriptionFactorBindingSite . biolink:VariantAsAModelOfDiseaseAssociation a sh:NodeShape ; rdfs:subClassOf biolink:VariantToDiseaseAssociation ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; + sh:property [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 40 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 43 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:qualified_predicate ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:SequenceVariant ; + sh:description "A variant that has a role in modeling the disease." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 19 ; sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_direction_qualifier ], + sh:order 38 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], + sh:order 34 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -24649,43 +25737,69 @@ biolink:VariantAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:knowledge_level ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "The relationship to the disease" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 42 ; + sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 35 ; sh:path dct:description ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -24693,109 +25807,53 @@ biolink:VariantAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:SequenceVariant ; - sh:description "A variant that has a role in modeling the disease." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "a point in time" ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:description "The relationship to the disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:anyURI ; sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:original_predicate ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ] ; + sh:path biolink:has_evidence ] ; sh:targetClass biolink:VariantAsAModelOfDiseaseAssociation . biolink:VariantToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; @@ -24807,14 +25865,7 @@ biolink:VariantToEntityAssociationMixin a sh:NodeShape ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ] ; + sh:path rdf:subject ] ; sh:targetClass biolink:VariantToEntityAssociationMixin . biolink:VariantToGeneExpressionAssociation a sh:NodeShape ; @@ -24822,185 +25873,137 @@ biolink:VariantToGeneExpressionAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a variant and expression of a gene (i.e. e-QTL)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:property [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 14 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category ], + sh:order 3 ; + sh:path biolink:phenotypic_state ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path biolink:iri ], + sh:order 23 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 29 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:original_predicate ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:object_category_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:timepoint ], - [ sh:class biolink:SequenceVariant ; - sh:description "a sequence variant in which the allele state is associated with some other entity" ; + sh:order 9 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:LifeStage ; + sh:description "stage during which gene or protein expression of takes place." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:object_namespace ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:knowledge_level ], + sh:order 2 ; + sh:path biolink:stage_qualifier ], [ sh:class biolink:AnatomicalEntity ; sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:expression_site ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 27 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:phenotypic_state ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 25 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:negated ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 20 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path rdf:predicate ], + sh:order 19 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:publications ], - [ sh:class biolink:LifeStage ; - sh:description "stage during which gene or protein expression of takes place." ; + sh:order 28 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:stage_qualifier ], - [ sh:class biolink:Gene ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:nodeKind sh:Literal ; + sh:order 18 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path rdf:object ], + sh:nodeKind sh:Literal ; + sh:order 38 ; + sh:path rdfs:label ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 32 ; sh:path biolink:p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:has_attribute ], + sh:order 11 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "a point in time" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 17 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:original_object ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 35 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + sh:order 5 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_closure ], + sh:order 36 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -25008,6 +26011,48 @@ biolink:VariantToGeneExpressionAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 34 ; sh:path biolink:id ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:knowledge_level ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 40 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 31 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category ], + [ sh:class biolink:Gene ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 39 ; + sh:path dct:description ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -25015,52 +26060,63 @@ biolink:VariantToGeneExpressionAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 16 ; sh:path biolink:agent_type ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:knowledge_source ], + sh:order 41 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:publications ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 33 ; sh:path biolink:adjusted_p_value ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 24 ; + sh:path biolink:object_closure ], + [ sh:class biolink:SequenceVariant ; + sh:description "a sequence variant in which the allele state is associated with some other entity" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 31 ; - sh:path biolink:retrieval_source_ids ], + sh:order 4 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Optional quantitative value indicating degree of expression." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:quantifier_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path biolink:deprecated ], + sh:order 12 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:subject_namespace ] ; + sh:order 37 ; + sh:path rdf:type ] ; sh:targetClass biolink:VariantToGeneExpressionAssociation . biolink:VariantToPhenotypicFeatureAssociation a sh:NodeShape ; @@ -25068,133 +26124,112 @@ biolink:VariantToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path rdfs:label ], + sh:order 31 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:object_category ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:category ], - [ sh:description "a point in time" ; + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:timepoint ], + sh:order 39 ; + sh:path biolink:has_count ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 45 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 32 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 34 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 38 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 45 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:order 42 ; + sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:subject_namespace ], + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 29 ; sh:path biolink:p_value ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:qualifier ], + sh:order 4 ; + sh:path biolink:negated ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -25202,101 +26237,141 @@ biolink:VariantToPhenotypicFeatureAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 12 ; sh:path biolink:knowledge_level ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:has_percentage ], + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 47 ; - sh:path biolink:qualified_predicate ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 43 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:subject_direction_qualifier ], + sh:nodeKind sh:Literal ; + sh:order 17 ; + sh:path biolink:original_object ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 40 ; sh:path biolink:has_total ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 37 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 41 ; + sh:path biolink:has_quotient ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 46 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 27 ; sh:path biolink:object_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:deprecated ], + sh:order 36 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 35 ; + sh:path rdfs:label ], + [ sh:class biolink:SequenceVariant ; + sh:description "a sequence variant in which the allele state is associated in some way with the phenotype state" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:sex_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 46 ; - sh:path biolink:object_direction_qualifier ], - [ sh:datatype xsd:double ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path biolink:has_count ], + sh:order 24 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + sh:order 47 ; + sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], + sh:order 9 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; @@ -25309,42 +26384,28 @@ biolink:VariantToPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 48 ; sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdf:type ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:agent_type ], + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:SequenceVariant ; - sh:description "a sequence variant in which the allele state is associated in some way with the phenotype state" ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ] ; + sh:order 44 ; + sh:path biolink:subject_direction_qualifier ] ; sh:targetClass biolink:VariantToPhenotypicFeatureAssociation . biolink:VariantToPopulationAssociation a sh:NodeShape ; @@ -25352,251 +26413,256 @@ biolink:VariantToPopulationAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a variant and a population, where the variant has particular frequency in the population" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path dct:description ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:has_percentage ], + sh:order 20 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:qualifiers ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 11 ; sh:path biolink:publications ], - [ sh:datatype xsd:double ; - sh:description "frequency of allele in population, expressed as a number with allele divided by number in reference population, aka allele frequency" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:integer ; - sh:description "number all populations that carry a particular allele, aka allele number" ; + sh:order 18 ; + sh:path biolink:timepoint ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 16 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:has_total ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 40 ; + sh:path dct:description ], + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "the population that is observed to have the frequency" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 39 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:original_predicate ], + sh:order 21 ; + sh:path biolink:original_object ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_evidence ], + sh:order 31 ; + sh:path biolink:object_label_closure ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 17 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:original_subject ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:timepoint ], + sh:order 37 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 33 ; + sh:path biolink:p_value ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:double ; + sh:description "frequency of allele in population, expressed as a number with allele divided by number in reference population, aka allele frequency" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 39 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 5 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:deprecated ], + sh:order 6 ; + sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:subject_label_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 24 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 34 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 25 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 38 ; + sh:path rdf:type ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 12 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:integer ; + sh:description "number in object population that carry a particular allele, aka allele count" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:p_value ], + sh:order 3 ; + sh:path biolink:has_count ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:negated ], + [ sh:datatype xsd:integer ; + sh:description "number all populations that carry a particular allele, aka allele number" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:object_category_closure ], + sh:order 9 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 29 ; sh:path biolink:object_namespace ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "the population that is observed to have the frequency" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 41 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 35 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 36 ; sh:path biolink:iri ], - [ sh:class biolink:SequenceVariant ; - sh:description "an allele that has a certain frequency in a given population" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:original_object ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 17 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 19 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 42 ; + sh:path biolink:deprecated ], + [ sh:class biolink:SequenceVariant ; + sh:description "an allele that has a certain frequency in a given population" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 41 ; - sh:path biolink:has_attribute ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:qualifier ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 16 ; - sh:path biolink:knowledge_level ], + sh:order 14 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 28 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:integer ; - sh:description "number in object population that carry a particular allele, aka allele count" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:has_count ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:object_closure ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:frequency_qualifier ] ; + sh:order 15 ; + sh:path biolink:aggregator_knowledge_source ] ; sh:targetClass biolink:VariantToPopulationAssociation . biolink:Vertebrate a sh:NodeShape ; @@ -25604,41 +26670,21 @@ biolink:Vertebrate a sh:NodeShape ; sh:closed true ; sh:description "A sub-phylum of animals consisting of those having a bony or cartilaginous vertebral column." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -25646,36 +26692,62 @@ biolink:Vertebrate a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path dct:description ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 2 ; - sh:path biolink:provided_by ] ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:xref ] ; sh:targetClass biolink:Vertebrate . biolink:Virus a sh:NodeShape ; @@ -25683,34 +26755,45 @@ biolink:Virus a sh:NodeShape ; sh:closed true ; sh:description "A virus is a microorganism that replicates itself as a microRNA and infects the host cell." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -25718,43 +26801,38 @@ biolink:Virus a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; - sh:path biolink:category ] ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path rdf:type ] ; sh:targetClass biolink:Virus . biolink:WebPage a sh:NodeShape ; @@ -25763,108 +26841,108 @@ biolink:WebPage a sh:NodeShape ; sh:description "a document that is published according to World Wide Web standards, which may incorporate text, graphics, sound, and/or other features." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:iri ], - [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 16 ; sh:path biolink:category ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path rdf:type ], + sh:order 1 ; + sh:path biolink:pages ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:license ], + sh:order 8 ; + sh:path biolink:rights ], [ sh:datatype xsd:string ; + sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:format ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 18 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:anyURI ; - sh:description "mesh terms tagging a publication" ; + sh:order 19 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:mesh_terms ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path dct:type ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:synonym ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:creation_date ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:authors ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:pages ], + sh:order 2 ; + sh:path biolink:summary ], [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; - sh:minCount 1 ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path dct:type ], + sh:order 11 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 21 ; sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "keywords tagging a publication" ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:keywords ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:anyURI ; + sh:description "mesh terms tagging a publication" ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path dct:description ], + sh:order 4 ; + sh:path biolink:mesh_terms ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:summary ], + sh:order 7 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:rights ], + sh:order 9 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 17 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; @@ -25872,11 +26950,16 @@ biolink:WebPage a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:authors ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:provided_by ] ; + sh:order 5 ; + sh:path biolink:xref ] ; sh:targetClass biolink:WebPage . biolink:Activity a sh:NodeShape ; @@ -25885,135 +26968,145 @@ biolink:Activity a sh:NodeShape ; sh:description "An activity is something that occurs over a period of time and acts upon or with entities; it may include consuming, processing, transforming, modifying, relocating, using, or generating entities." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:category ], + sh:order 4 ; + sh:path biolink:id ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path dct:description ] ; + sh:order 2 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:Activity . biolink:AdministrativeEntity a sh:NodeShape ; rdfs:subClassOf biolink:NamedThing ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path dct:description ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path rdfs:label ], + sh:order 2 ; + sh:path biolink:full_name ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 1 ; + sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:deprecated ], + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:id ] ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path rdf:type ] ; sh:targetClass biolink:AdministrativeEntity . biolink:Annotation a sh:NodeShape ; @@ -26027,172 +27120,215 @@ biolink:Article a sh:NodeShape ; sh:closed true ; sh:description "a piece of writing on a particular topic presented as a stand-alone section of a larger publication" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path rdf:type ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:rights ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:order 9 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 22 ; sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 17 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:provided_by ], [ sh:datatype xsd:anyURI ; - sh:description "The enclosing parent serial containing the article should have industry-standard identifier from ISSN." ; + sh:description "mesh terms tagging a publication" ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:mesh_terms ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 21 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:published_in ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 16 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 19 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:pages ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:deprecated ], + sh:order 12 ; + sh:path biolink:rights ], [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:id ], + sh:order 3 ; + sh:path biolink:issue ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:summary ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; + sh:order 10 ; + sh:path dct:type ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 23 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:issue ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 24 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:volume ], + sh:order 6 ; + sh:path biolink:summary ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:license ], + [ sh:datatype xsd:string ; + sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:volume ], + [ sh:datatype xsd:anyURI ; + sh:description "The enclosing parent serial containing the article should have industry-standard identifier from ISSN." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:published_in ], [ sh:datatype xsd:string ; sh:description "Optional value, if used locally as a convenience, is set to the iso abbreviation of the 'published in' parent." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:iso_abbreviation ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:keywords ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 20 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 18 ; + sh:path biolink:id ], [ sh:class biolink:Agent ; sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:authors ], - [ sh:datatype xsd:anyURI ; - sh:description "mesh terms tagging a publication" ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:mesh_terms ], + sh:order 14 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path dct:type ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "keywords tagging a publication" ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:xref ], + sh:order 7 ; + sh:path biolink:keywords ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:format ] ; + sh:order 5 ; + sh:path biolink:pages ] ; sh:targetClass biolink:Article . biolink:Behavior a sh:NodeShape ; rdfs:subClassOf biolink:BiologicalProcess ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; + sh:property [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:in_taxon_label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:category ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_output ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -26200,66 +27336,34 @@ biolink:Behavior a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:full_name ], [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_output ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:in_taxon_label ], + sh:order 1 ; + sh:path biolink:has_input ], [ sh:class biolink:PhysicalEntity ; sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:enabled_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdf:type ] ; + sh:order 14 ; + sh:path dct:description ] ; sh:targetClass biolink:Behavior . biolink:BehavioralFeature a sh:NodeShape ; @@ -26267,60 +27371,75 @@ biolink:BehavioralFeature a sh:NodeShape ; sh:closed true ; sh:description "A phenotypic feature which is behavioral in nature." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 9 ; @@ -26329,16 +27448,7 @@ biolink:BehavioralFeature a sh:NodeShape ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ] ; + sh:path biolink:xref ] ; sh:targetClass biolink:BehavioralFeature . biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; @@ -26346,169 +27456,110 @@ biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "An relationship between a cell line and a disease or a phenotype, where the cell line is derived from an individual with that disease or phenotype." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:property [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 33 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 23 ; sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -26516,51 +27567,115 @@ biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], + sh:order 32 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 24 ; sh:path biolink:object_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 34 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 28 ; sh:path biolink:p_value ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 35 ; - sh:path dct:description ] ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:qualifier ] ; sh:targetClass biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation . biolink:CellularComponent a sh:NodeShape ; @@ -26568,56 +27683,71 @@ biolink:CellularComponent a sh:NodeShape ; sh:closed true ; sh:description "A location in or around a cell" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 3 ; + sh:path biolink:xref ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -26625,21 +27755,12 @@ biolink:CellularComponent a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ] ; + sh:order 8 ; + sh:path biolink:category ] ; sh:targetClass biolink:CellularComponent . biolink:ChemicalExposure a sh:NodeShape ; @@ -26647,91 +27768,97 @@ biolink:ChemicalExposure a sh:NodeShape ; sh:closed true ; sh:description "A chemical exposure is an intake of a particular chemical entity." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path rdfs:label ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 5 ; + sh:path biolink:iri ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 0 ; + sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdf:type ], + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; - sh:path biolink:has_attribute_type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:timepoint ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 0 ; - sh:path biolink:has_quantitative_value ] ; + sh:path biolink:has_attribute_type ] ; sh:targetClass biolink:ChemicalExposure . biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; @@ -26739,44 +27866,30 @@ biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a sh:No sh:closed true ; sh:description "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary undesirable effect." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:knowledge_level ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path rdfs:label ], + sh:order 29 ; + sh:path biolink:p_value ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:deprecated ], + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdf:type ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; @@ -26784,66 +27897,43 @@ biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a sh:No sh:order 30 ; sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:id ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 17 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:subject_category_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], + sh:order 33 ; + sh:path biolink:category ], [ sh:description "" ; sh:in ( "life_threatening_adverse_event" "serious_adverse_event" "suspected_adverse_reaction" "unexpected_adverse_event" ) ; sh:maxCount 1 ; @@ -26856,109 +27946,151 @@ biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a sh:No sh:nodeKind sh:BlankNodeOrIRI ; sh:order 1 ; sh:path rdf:subject ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:agent_type ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path rdf:predicate ], + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 37 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 27 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:p_value ], + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:negated ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:description "a human-readable description of an entity" ; + sh:order 31 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path dct:description ], + sh:order 32 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:object_closure ], + sh:order 35 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:subject_namespace ], + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:knowledge_level ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_object ], + sh:order 9 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:original_subject ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 25 ; sh:path biolink:object_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 36 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 38 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:negated ], [ sh:datatype xsd:anyURI ; sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 16 ; - sh:path biolink:original_predicate ] ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path rdf:type ] ; sh:targetClass biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation . biolink:ClinicalCourse a sh:NodeShape ; @@ -26966,15 +28098,11 @@ biolink:ClinicalCourse a sh:NodeShape ; sh:closed true ; sh:description "The course a disease typically takes from its onset, progression in time, and eventual resolution or death of the affected individual" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], + sh:property [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -26982,16 +28110,11 @@ biolink:ClinicalCourse a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:id ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], + sh:order 7 ; + sh:path biolink:xref ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -26999,121 +28122,140 @@ biolink:ClinicalCourse a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:synonym ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; - sh:path biolink:deprecated ] ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path dct:description ] ; sh:targetClass biolink:ClinicalCourse . biolink:ClinicalIntervention a sh:NodeShape ; rdfs:subClassOf biolink:ClinicalEntity ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 0 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path dct:description ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 6 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:full_name ], + sh:order 8 ; + sh:path rdfs:label ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path dct:description ], + sh:order 2 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 3 ; - sh:path biolink:synonym ] ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:iri ] ; sh:targetClass biolink:ClinicalIntervention . biolink:Dataset a sh:NodeShape ; @@ -27122,61 +28264,52 @@ biolink:Dataset a sh:NodeShape ; sh:description "an item that refers to a collection of data from a data source." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:synonym ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 2 ; + sh:path biolink:format ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 0 ; + sh:path biolink:license ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:format ], + sh:order 1 ; + sh:path biolink:rights ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -27189,21 +28322,35 @@ biolink:Dataset a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path dct:description ], [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:license ] ; + sh:order 9 ; + sh:path biolink:iri ] ; sh:targetClass biolink:Dataset . biolink:DatasetDistribution a sh:NodeShape ; @@ -27212,6 +28359,17 @@ biolink:DatasetDistribution a sh:NodeShape ; sh:description "an item that holds distribution level information about a dataset." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 5 ; @@ -27221,21 +28379,35 @@ biolink:DatasetDistribution a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:rights ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:category ], + sh:order 9 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:license ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:synonym ], + sh:order 11 ; + sh:path biolink:category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -27246,33 +28418,22 @@ biolink:DatasetDistribution a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 16 ; sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:xref ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; @@ -27280,25 +28441,16 @@ biolink:DatasetDistribution a sh:NodeShape ; sh:order 4 ; sh:path biolink:creation_date ], [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:distribution_download_url ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 10 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:iri ] ; + sh:order 0 ; + sh:path biolink:distribution_download_url ] ; sh:targetClass biolink:DatasetDistribution . biolink:Device a sh:NodeShape ; @@ -27306,68 +28458,73 @@ biolink:Device a sh:NodeShape ; sh:closed true ; sh:description "A thing made or adapted for a particular purpose, especially a piece of mechanical or electronic equipment" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path rdfs:label ], + sh:order 1 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:id ], + sh:order 9 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:provided_by ], + sh:order 8 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path rdf:type ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:deprecated ] ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:Device . biolink:DrugExposure a sh:NodeShape ; @@ -27375,91 +28532,97 @@ biolink:DrugExposure a sh:NodeShape ; sh:closed true ; sh:description "A drug exposure is an intake of a particular drug." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_attribute_type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path rdfs:label ], - [ sh:class biolink:QuantityValue ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 1 ; - sh:path biolink:has_quantitative_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], + sh:order 4 ; + sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path rdfs:label ], [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "a point in time" ; + sh:order 13 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_attribute_type ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 1 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:timepoint ], + sh:order 15 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; - sh:path biolink:id ] ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:timepoint ] ; sh:targetClass biolink:DrugExposure . biolink:EnvironmentalExposure a sh:NodeShape ; @@ -27467,62 +28630,47 @@ biolink:EnvironmentalExposure a sh:NodeShape ; sh:closed true ; sh:description "A environmental exposure is a factor relating to abiotic processes in the environment including sunlight (UV-B), atmospheric (heat, cold, general pollution) and water-born contaminants." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:id ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:category ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -27530,28 +28678,49 @@ biolink:EnvironmentalExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_attribute_type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:full_name ], + sh:order 0 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; - sh:path rdfs:label ] ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:iri ] ; sh:targetClass biolink:EnvironmentalExposure . biolink:Exon a sh:NodeShape ; @@ -27559,78 +28728,84 @@ biolink:Exon a sh:NodeShape ; sh:closed true ; sh:description "A region of the transcript sequence within a gene which is not removed from the primary RNA transcript by RNA splicing." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ] ; + sh:order 6 ; + sh:path biolink:id ] ; sh:targetClass biolink:Exon . biolink:FeatureOrDiseaseQualifiersToEntityMixin a sh:NodeShape ; @@ -27638,37 +28813,18 @@ biolink:FeatureOrDiseaseQualifiersToEntityMixin a sh:NodeShape ; sh:closed false ; sh:description "Qualifiers for disease or phenotype to entity associations." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:order 6 ; + sh:path rdf:subject ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualified_predicate ], + sh:order 3 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; @@ -27680,18 +28836,38 @@ biolink:FeatureOrDiseaseQualifiersToEntityMixin a sh:NodeShape ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:subject_direction_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:object_direction_qualifier ], + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:qualified_predicate ], [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path rdf:subject ] ; + sh:order 8 ; + sh:path rdf:object ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:FeatureOrDiseaseQualifiersToEntityMixin . biolink:GeneFamily a sh:NodeShape ; @@ -27699,31 +28875,7 @@ biolink:GeneFamily a sh:NodeShape ; sh:closed true ; sh:description "any grouping of multiple genes or gene products related by common descent" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Gene ; - sh:description "connects an entity with one or more gene or gene products" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_gene_or_gene_product ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:anyURI ; + sh:property [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 4 ; @@ -27733,22 +28885,66 @@ biolink:GeneFamily a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path dct:description ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], + [ sh:class biolink:Gene ; + sh:description "connects an entity with one or more gene or gene products" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_gene_or_gene_product ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:iri ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -27756,26 +28952,12 @@ biolink:GeneFamily a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ] ; + sh:path rdfs:label ] ; sh:targetClass biolink:GeneFamily . biolink:GeneticInheritance a sh:NodeShape ; @@ -27783,108 +28965,110 @@ biolink:GeneticInheritance a sh:NodeShape ; sh:closed true ; sh:description "The pattern or 'mode' in which a particular genetic trait or disorder is passed from one generation to the next, e.g. autosomal dominant, autosomal recessive, etc." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + sh:property [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], + sh:order 9 ; + sh:path rdf:type ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 5 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ] ; + sh:order 1 ; + sh:path biolink:in_taxon_label ] ; sh:targetClass biolink:GeneticInheritance . biolink:GenotypeToDiseaseAssociation a sh:NodeShape ; rdfs:subClassOf biolink:Association ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:property [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 39 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; @@ -27892,34 +29076,28 @@ biolink:GenotypeToDiseaseAssociation a sh:NodeShape ; sh:order 42 ; sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 38 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; @@ -27927,28 +29105,27 @@ biolink:GenotypeToDiseaseAssociation a sh:NodeShape ; sh:order 29 ; sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:Disease ; sh:description "a disease that is associated with that genotype" ; sh:maxCount 1 ; @@ -27956,148 +29133,154 @@ biolink:GenotypeToDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "E.g. is pathogenic for" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 35 ; sh:path dct:description ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], + sh:order 31 ; + sh:path biolink:iri ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:description "E.g. is pathogenic for" ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:Genotype ; + sh:description "a genotype that is associated in some way with a disease state" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 41 ; sh:path biolink:object_direction_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 34 ; sh:path rdfs:label ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Genotype ; - sh:description "a genotype that is associated in some way with a disease state" ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 43 ; + sh:path biolink:frequency_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "a point in time" ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], + sh:order 40 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; @@ -28105,11 +29288,21 @@ biolink:GenotypeToDiseaseAssociation a sh:NodeShape ; sh:order 14 ; sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ] ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ] ; sh:targetClass biolink:GenotypeToDiseaseAssociation . biolink:GeographicLocation a sh:NodeShape ; @@ -28117,73 +29310,78 @@ biolink:GeographicLocation a sh:NodeShape ; sh:closed true ; sh:description "a location that can be described in lat/long coordinates" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:float ; - sh:description "latitude" ; - sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:latitude ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:float ; + sh:description "latitude" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:latitude ], [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:float ; sh:description "longitude" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:longitude ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:category ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -28198,78 +29396,84 @@ biolink:Mammal a sh:NodeShape ; sh:closed true ; sh:description "A member of the class Mammalia, a clade of endothermic amniotes distinguished from reptiles and birds by the possession of hair, three middle ear bones, mammary glands, and a neocortex" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; + sh:property [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], + sh:order 10 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 3 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 8 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ] ; + sh:order 6 ; + sh:path biolink:id ] ; sh:targetClass biolink:Mammal . biolink:MolecularMixture a sh:NodeShape ; @@ -28281,17 +29485,21 @@ biolink:MolecularMixture a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 16 ; sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:boolean ; + sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 7 ; + sh:path biolink:is_toxic ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; @@ -28300,92 +29508,93 @@ biolink:MolecularMixture a sh:NodeShape ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:trade_name ], + sh:order 0 ; + sh:path biolink:is_supplement ], [ sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:drug_regulatory_status_world_wide ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 17 ; + sh:path rdfs:label ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_chemical_role ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:iri ], + sh:order 20 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:is_supplement ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "" ; + sh:order 14 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:is_toxic ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_chemical_role ], + sh:order 18 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:max_tolerated_dose ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:id ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:category ], + [ sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:provided_by ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:xref ], - [ sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; - sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ] ; + [ sh:datatype xsd:string ; + sh:description "" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:trade_name ] ; sh:targetClass biolink:MolecularMixture . biolink:Occurrent a sh:NodeShape ; @@ -28400,56 +29609,51 @@ biolink:Onset a sh:NodeShape ; sh:closed true ; sh:description "The age group in which (disease) symptom manifestations appear." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; + sh:property [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:deprecated ], + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:category ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path rdfs:label ], + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], + sh:order 0 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], + sh:order 12 ; + sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -28457,29 +29661,39 @@ biolink:Onset a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ] ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:Onset . biolink:OrganismAttribute a sh:NodeShape ; @@ -28487,86 +29701,91 @@ biolink:OrganismAttribute a sh:NodeShape ; sh:closed true ; sh:description "describes a characteristic of an organismal entity." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], + sh:property [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:deprecated ], + sh:order 12 ; + sh:path dct:description ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:category ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path dct:description ], + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:id ], + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ] ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ] ; sh:targetClass biolink:OrganismAttribute . biolink:PairwiseGeneToGeneInteraction a sh:NodeShape ; @@ -28574,37 +29793,37 @@ biolink:PairwiseGeneToGeneInteraction a sh:NodeShape ; sh:closed true ; sh:description "An interaction between two genes or two gene products. May be physical (e.g. protein binding) or genetic (between genes). May be symmetric (e.g. protein interaction) or directed (e.g. phosphorylation)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:description "interaction relationship type" ; + sh:property [ sh:datatype xsd:string ; + sh:description "interaction relationship type" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path rdf:predicate ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -28612,45 +29831,35 @@ biolink:PairwiseGeneToGeneInteraction a sh:NodeShape ; sh:minCount 1 ; sh:order 12 ; sh:path biolink:agent_type ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; @@ -28663,114 +29872,108 @@ biolink:PairwiseGeneToGeneInteraction a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 30 ; sh:path biolink:id ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 20 ; sh:path biolink:object_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 31 ; sh:path biolink:iri ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 35 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; @@ -28778,17 +29981,38 @@ biolink:PairwiseGeneToGeneInteraction a sh:NodeShape ; sh:nodeKind sh:BlankNodeOrIRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ] ; + sh:order 34 ; + sh:path rdfs:label ] ; sh:targetClass biolink:PairwiseGeneToGeneInteraction . biolink:Polypeptide a sh:NodeShape ; @@ -28796,38 +30020,45 @@ biolink:Polypeptide a sh:NodeShape ; sh:closed true ; sh:description "A polypeptide is a molecular entity characterized by availability in protein databases of amino-acid-based sequence representations of its precise primary structure; for convenience of representation, partial sequences of various kinds are included, even if they do not represent a physical molecule." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -28835,39 +30066,38 @@ biolink:Polypeptide a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:order 9 ; + sh:path rdf:type ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ] ; + sh:order 2 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:Polypeptide . biolink:PredicateMapping a sh:NodeShape ; @@ -28875,39 +30105,40 @@ biolink:PredicateMapping a sh:NodeShape ; sh:description "A deprecated predicate mapping object contains the deprecated predicate and an example of the rewiring that should be done to use a qualified statement in its place." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:string ; - sh:description "The predicate that is being replaced by the fully qualified representation of predicate + subject and object qualifiers. Only to be used in test data and mapping data to help with the transition to the fully qualified predicate model. Not to be used in knowledge graphs." ; + sh:order 1 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:OrganismTaxon ; + sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:mapped_predicate ], + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:species_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 3 ; + sh:path biolink:subject_form_or_variant_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "a list of terms from different schemas or terminology systems that have a broader, more general meaning. Broader terms are typically shown as parents in a hierarchy or tree." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:broad_match ], [ sh:class biolink:NamedThing ; sh:description "holds between two entities that have strictly equivalent meanings, with a high degree of confidence" ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:exact_match ], - [ sh:class biolink:NamedThing ; - sh:description "a list of terms from different schemas or terminology systems that have a narrower, more specific meaning. Narrower terms are typically shown as children in a hierarchy or tree." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:narrow_match ], [ sh:datatype xsd:string ; - sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:object_form_or_variant_qualifier ], + sh:order 7 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; sh:maxCount 1 ; @@ -28915,22 +30146,16 @@ biolink:PredicateMapping a sh:NodeShape ; sh:order 12 ; sh:path biolink:object_part_qualifier ], [ sh:datatype xsd:string ; - sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:subject_part_qualifier ], + sh:order 6 ; + sh:path biolink:subject_context_qualifier ], [ sh:datatype xsd:string ; + sh:description "The predicate that is being replaced by the fully qualified representation of predicate + subject and object qualifiers. Only to be used in test data and mapping data to help with the transition to the fully qualified predicate model. Not to be used in knowledge graphs." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:object_context_qualifier ], - [ sh:class biolink:OrganismTaxon ; - sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:species_context_qualifier ], + sh:order 0 ; + sh:path biolink:mapped_predicate ], [ sh:datatype xsd:string ; sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement)." ; sh:maxCount 1 ; @@ -28938,43 +30163,44 @@ biolink:PredicateMapping a sh:NodeShape ; sh:order 13 ; sh:path biolink:object_derivative_qualifier ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 8 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; - sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:subject_form_or_variant_qualifier ], + sh:order 9 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; + sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:subject_context_qualifier ], + sh:order 4 ; + sh:path biolink:subject_part_qualifier ], [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:causal_mechanism_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:datatype xsd:string ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "a list of terms from different schemas or terminology systems that have a broader, more general meaning. Broader terms are typically shown as parents in a hierarchy or tree." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:broad_match ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:anatomical_context_qualifier ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path rdf:predicate ], + sh:order 14 ; + sh:path biolink:object_context_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "a list of terms from different schemas or terminology systems that have a narrower, more specific meaning. Narrower terms are typically shown as children in a hierarchy or tree." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:narrow_match ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; @@ -28986,12 +30212,17 @@ biolink:PredicateMapping a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:subject_derivative_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; + sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:anatomical_context_qualifier ] ; + sh:order 11 ; + sh:path biolink:object_form_or_variant_qualifier ] ; sh:targetClass biolink:PredicateMapping . biolink:Procedure a sh:NodeShape ; @@ -28999,68 +30230,73 @@ biolink:Procedure a sh:NodeShape ; sh:closed true ; sh:description "A series of actions conducted in a certain order or manner" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:category ], + sh:order 4 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path rdf:type ], + sh:order 1 ; + sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path rdfs:label ], [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + sh:order 6 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path dct:description ], + sh:order 2 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:id ] ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:Procedure . biolink:Protein a sh:NodeShape ; @@ -29068,55 +30304,60 @@ biolink:Protein a sh:NodeShape ; sh:closed true ; sh:description "A gene product that is composed of a chain of amino acid sequences and is produced by ribosome-mediated translation of mRNA" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:property [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:synonym ], + sh:order 8 ; + sh:path biolink:category ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -29124,113 +30365,63 @@ biolink:Protein a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ] ; + sh:order 3 ; + sh:path biolink:in_taxon_label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ] ; sh:targetClass biolink:Protein . biolink:ReactionToParticipantAssociation a sh:NodeShape ; rdfs:subClassOf biolink:ChemicalToChemicalAssociation ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:adjusted_p_value ], - [ sh:datatype xsd:anyURI ; + sh:property [ sh:datatype xsd:anyURI ; sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 18 ; sh:path biolink:original_predicate ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_namespace ], + sh:order 17 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 31 ; sh:path biolink:p_value ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 22 ; - sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the chemical element that is the target of the statement" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 16 ; + sh:path biolink:timepoint ], + [ sh:description "the side of a reaction being modeled (ie: left or right)" ; + sh:in ( "left" "right" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category ], + sh:order 2 ; + sh:path biolink:reaction_side ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], + sh:order 23 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -29238,11 +30429,10 @@ biolink:ReactionToParticipantAssociation a sh:NodeShape ; sh:order 40 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:knowledge_source ], + sh:order 36 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -29250,30 +30440,35 @@ biolink:ReactionToParticipantAssociation a sh:NodeShape ; sh:order 21 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; + sh:order 27 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path dct:description ], - [ sh:description "the side of a reaction being modeled (ie: left or right)" ; - sh:in ( "left" "right" ) ; + sh:order 34 ; + sh:path biolink:iri ], + [ sh:class biolink:MolecularEntity ; + sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:reaction_side ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:subject_category_closure ], + sh:order 8 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; @@ -29285,29 +30480,80 @@ biolink:ReactionToParticipantAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:object_label_closure ], + sh:order 32 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], + sh:order 38 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; + sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:reaction_direction ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 14 ; - sh:path biolink:knowledge_level ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 15 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 35 ; + sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], + sh:order 39 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 30 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -29316,67 +30562,68 @@ biolink:ReactionToParticipantAssociation a sh:NodeShape ; sh:order 33 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_subject ], - [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; - sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:reaction_direction ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:object_closure ], + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:integer ; sh:description "the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:stoichiometry ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:stoichiometry ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 22 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path rdf:predicate ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:agent_type ], + sh:order 28 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:MolecularEntity ; - sh:description "the chemical entity or entity that is an interactor" ; + sh:order 29 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:ChemicalEntity ; + sh:description "the chemical element that is the target of the statement" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 5 ; + sh:path rdf:object ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:iri ], - [ sh:description "a point in time" ; + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:timepoint ] ; + sh:order 37 ; + sh:path rdfs:label ] ; sh:targetClass biolink:ReactionToParticipantAssociation . biolink:SequenceAssociation a sh:NodeShape ; @@ -29384,12 +30631,24 @@ biolink:SequenceAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a sequence feature and a nucleic acid entity it is localized to." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -29397,208 +30656,201 @@ biolink:SequenceAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 12 ; sh:path biolink:agent_type ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 31 ; + sh:path biolink:iri ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:anyURI ; sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:original_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 28 ; sh:path biolink:p_value ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "a human-readable description of an entity" ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ] ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ] ; sh:targetClass biolink:SequenceAssociation . biolink:SocioeconomicAttribute a sh:NodeShape ; @@ -29606,25 +30858,22 @@ biolink:SocioeconomicAttribute a sh:NodeShape ; sh:closed true ; sh:description "Attributes relating to a socioeconomic manifestation" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:datatype xsd:anyURI ; + sh:property [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:xref ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -29638,32 +30887,17 @@ biolink:SocioeconomicAttribute a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -29671,17 +30905,40 @@ biolink:SocioeconomicAttribute a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; @@ -29699,34 +30956,49 @@ biolink:StudyPopulation a sh:NodeShape ; sh:closed true ; sh:description "A group of people banded together or treated as a group as participants in a research study." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -29734,192 +31006,206 @@ biolink:StudyPopulation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:full_name ] ; + sh:targetClass biolink:StudyPopulation . + +biolink:TaxonomicRank a sh:NodeShape ; + rdfs:subClassOf biolink:OntologyClass ; + sh:closed true ; + sh:description "A descriptor for the rank within a taxonomic classification. Example instance: TAXRANK:0000017 (kingdom)" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:boolean ; + sh:path biolink:id ] ; + sh:targetClass biolink:TaxonomicRank . + +biolink:Treatment a sh:NodeShape ; + rdfs:subClassOf biolink:NamedThing ; + sh:closed true ; + sh:description "A treatment is targeted at a disease or phenotype and may involve multiple drug 'exposures', medical devices and/or procedures" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; + sh:order 15 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; sh:order 4 ; - sh:path biolink:full_name ] ; - sh:targetClass biolink:StudyPopulation . - -biolink:TaxonomicRank a sh:NodeShape ; - rdfs:subClassOf biolink:OntologyClass ; - sh:closed true ; - sh:description "A descriptor for the rank within a taxonomic classification. Example instance: TAXRANK:0000017 (kingdom)" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:id ] ; - sh:targetClass biolink:TaxonomicRank . - -biolink:Treatment a sh:NodeShape ; - rdfs:subClassOf biolink:NamedThing ; - sh:closed true ; - sh:description "A treatment is targeted at a disease or phenotype and may involve multiple drug 'exposures', medical devices and/or procedures" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "a point in time" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Drug ; - sh:description "connects an entity to one or more drugs" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_drug ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], + sh:order 5 ; + sh:path biolink:xref ], [ sh:class biolink:Procedure ; sh:description "connects an entity to one or more (medical) procedures" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_procedure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:synonym ], + sh:order 11 ; + sh:path rdf:type ], [ sh:class biolink:Device ; sh:description "connects an entity to one or more (medical) devices" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_device ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:class biolink:Drug ; + sh:description "connects an entity to one or more drugs" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_drug ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:id ] ; + sh:order 10 ; + sh:path biolink:category ] ; sh:targetClass biolink:Treatment . biolink:VariantToDiseaseAssociation a sh:NodeShape ; rdfs:subClassOf biolink:Association ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_direction_qualifier ], + sh:nodeKind sh:Literal ; + sh:order 38 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 40 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 24 ; sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], + sh:order 41 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:SequenceVariant ; + sh:description "a sequence variant in which the allele state is associated in some way with the disease state" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -29927,98 +31213,60 @@ biolink:VariantToDiseaseAssociation a sh:NodeShape ; sh:order 37 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], + sh:nodeKind sh:Literal ; + sh:order 42 ; + sh:path biolink:qualified_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 26 ; sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], [ sh:datatype ; sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 43 ; sh:path biolink:frequency_qualifier ], - [ sh:class biolink:Disease ; - sh:description "a disease that is associated with that variant" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 19 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:SequenceVariant ; - sh:description "a sequence variant in which the allele state is associated in some way with the disease state" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:qualified_predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; @@ -30030,26 +31278,6 @@ biolink:VariantToDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 23 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; @@ -30057,11 +31285,30 @@ biolink:VariantToDiseaseAssociation a sh:NodeShape ; sh:order 14 ; sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 31 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:class biolink:Disease ; + sh:description "a disease that is associated with that variant" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -30069,66 +31316,93 @@ biolink:VariantToDiseaseAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:knowledge_level ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:description "a point in time" ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "E.g. is pathogenic for" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "E.g. is pathogenic for" ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ] ; + sh:order 35 ; + sh:path dct:description ] ; sh:targetClass biolink:VariantToDiseaseAssociation . biolink:VariantToGeneAssociation a sh:NodeShape ; @@ -30136,77 +31410,116 @@ biolink:VariantToGeneAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a variant and a gene, where the variant has a genetic association with the gene (i.e. is in linkage disequilibrium)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 30 ; + sh:path biolink:id ], + [ sh:class biolink:Gene ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 34 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:order 31 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 35 ; + sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:class biolink:SequenceVariant ; sh:description "a sequence variant in which the allele state is associated with some other entity" ; sh:maxCount 1 ; @@ -30214,17 +31527,29 @@ biolink:VariantToGeneAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; @@ -30237,120 +31562,74 @@ biolink:VariantToGeneAssociation a sh:NodeShape ; sh:order 25 ; sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; sh:order 32 ; sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Gene ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ] ; + sh:path biolink:agent_type ] ; sh:targetClass biolink:VariantToGeneAssociation . biolink:Zygosity a sh:NodeShape ; @@ -30358,56 +31637,23 @@ biolink:Zygosity a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; @@ -30419,7 +31665,8 @@ biolink:Zygosity a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; @@ -30431,150 +31678,93 @@ biolink:Zygosity a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ] ; - sh:targetClass biolink:Zygosity . - -biolink:AnatomicalEntityToAnatomicalEntityAssociation a sh:NodeShape ; - rdfs:subClassOf biolink:Association ; - sh:closed false ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:description "a point in time" ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 0 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; + sh:order 4 ; sh:path biolink:iri ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; - sh:path biolink:original_subject ], + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 9 ; + sh:path biolink:synonym ] ; + sh:targetClass biolink:Zygosity . + +biolink:AnatomicalEntityToAnatomicalEntityAssociation a sh:NodeShape ; + rdfs:subClassOf biolink:Association ; + sh:closed false ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 20 ; sh:path biolink:object_closure ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 29 ; sh:path biolink:adjusted_p_value ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -30582,44 +31772,98 @@ biolink:AnatomicalEntityToAnatomicalEntityAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:knowledge_level ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 34 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 16 ; sh:path biolink:original_object ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:id ], [ sh:class biolink:AnatomicalEntity ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -30628,36 +31872,81 @@ biolink:AnatomicalEntityToAnatomicalEntityAssociation a sh:NodeShape ; sh:order 2 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "a human-readable description of an entity" ; + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ] ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ] ; sh:targetClass biolink:AnatomicalEntityToAnatomicalEntityAssociation . biolink:BiologicalProcessOrActivity a sh:NodeShape ; @@ -30665,47 +31954,40 @@ biolink:BiologicalProcessOrActivity a sh:NodeShape ; sh:closed true ; sh:description "Either an individual molecular activity, or a collection of causally connected molecular activities in a biological system." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:enabled_by ], + sh:order 0 ; + sh:path biolink:has_input ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:category ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 16 ; sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:in_taxon_label ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:iri ], + sh:order 7 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -30718,40 +32000,53 @@ biolink:BiologicalProcessOrActivity a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:in_taxon ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_input ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 15 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], + sh:order 12 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:in_taxon_label ], + [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:enabled_by ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_output ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path rdfs:label ], + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdf:type ] ; + sh:order 10 ; + sh:path biolink:iri ] ; sh:targetClass biolink:BiologicalProcessOrActivity . biolink:Case a sh:NodeShape ; @@ -30759,42 +32054,34 @@ biolink:Case a sh:NodeShape ; sh:closed true ; sh:description "An individual (human) organism that has a patient role in some clinical context." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -30802,13 +32089,8 @@ biolink:Case a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; @@ -30817,124 +32099,150 @@ biolink:Case a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; - sh:path biolink:in_taxon_label ] ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:Case . biolink:CellLine a sh:NodeShape ; rdfs:subClassOf biolink:OrganismalEntity ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:id ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ] ; + sh:order 3 ; + sh:path biolink:xref ] ; sh:targetClass biolink:CellLine . biolink:ChemicalEntityToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An interaction between a chemical entity and another entity" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; - sh:description "the chemical entity that is an interactor" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:NamedThing ; + sh:property [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; - sh:path rdf:predicate ] ; + sh:path rdf:predicate ], + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "the chemical entity that is an interactor" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 0 ; + sh:path rdf:subject ] ; sh:targetClass biolink:ChemicalEntityToEntityAssociationMixin . biolink:ChemicalToChemicalAssociation a sh:NodeShape ; @@ -30942,176 +32250,173 @@ biolink:ChemicalToChemicalAssociation a sh:NodeShape ; sh:closed true ; sh:description "A relationship between two chemical entities. This can encompass actual interactions as well as temporal causal edges, e.g. one chemical converted to another." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:object_category ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 19 ; sh:path biolink:subject_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:ChemicalEntity ; + sh:description "the chemical element that is the target of the statement" ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 28 ; sh:path biolink:p_value ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the chemical element that is the target of the statement" ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], + sh:order 31 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; @@ -31119,44 +32424,52 @@ biolink:ChemicalToChemicalAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNodeOrIRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ] ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:original_subject ] ; sh:targetClass biolink:ChemicalToChemicalAssociation . biolink:ClinicalEntity a sh:NodeShape ; @@ -31165,17 +32478,26 @@ biolink:ClinicalEntity a sh:NodeShape ; sh:description "Any entity or process that exists in the clinical domain and outside the biological realm. Diseases are placed under biological entities" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path rdfs:label ], + sh:order 5 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 7 ; @@ -31186,94 +32508,93 @@ biolink:ClinicalEntity a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:synonym ] ; + sh:order 8 ; + sh:path rdfs:label ] ; sh:targetClass biolink:ClinicalEntity . biolink:Entity a sh:NodeShape ; sh:closed false ; sh:description "Root Biolink Model class for all things and informational relationships, real or imagined." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path rdf:type ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:category ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path rdfs:label ] ; + sh:order 1 ; + sh:path biolink:iri ] ; sh:targetClass biolink:Entity . biolink:EntityToFeatureOrDiseaseQualifiersMixin a sh:NodeShape ; @@ -31281,18 +32602,31 @@ biolink:EntityToFeatureOrDiseaseQualifiersMixin a sh:NodeShape ; sh:closed false ; sh:description "Qualifiers for entity to disease or phenotype associations." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path rdf:predicate ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:frequency_qualifier ], + sh:order 2 ; + sh:path biolink:object_aspect_qualifier ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -31300,41 +32634,29 @@ biolink:EntityToFeatureOrDiseaseQualifiersMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path rdf:subject ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:object_direction_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_direction_qualifier ], + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 3 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; - sh:path biolink:qualified_predicate ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path rdf:object ] ; + sh:path biolink:qualified_predicate ] ; sh:targetClass biolink:EntityToFeatureOrDiseaseQualifiersMixin . biolink:FrequencyQualifierMixin a sh:NodeShape ; @@ -31342,31 +32664,32 @@ biolink:FrequencyQualifierMixin a sh:NodeShape ; sh:description "Qualifier for frequency type associations" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 3 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path rdf:predicate ], [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ] ; + sh:order 1 ; + sh:path rdf:subject ], + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:frequency_qualifier ] ; sh:targetClass biolink:FrequencyQualifierMixin . biolink:GeneProductMixin a sh:NodeShape ; @@ -31374,16 +32697,18 @@ biolink:GeneProductMixin a sh:NodeShape ; sh:closed false ; sh:description "The functional molecular product of a single gene locus. Gene products are either proteins or functional RNA molecules." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:anyURI ; + sh:property [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; @@ -31394,29 +32719,80 @@ biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; rdfs:subClassOf biolink:Association ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:property [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 44 ; - sh:path biolink:has_percentage ], + sh:order 38 ; + sh:path dct:description ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 45 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 46 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype ; - sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 37 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 48 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:retrieval_source_ids ], + sh:order 25 ; + sh:path biolink:object_category_closure ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:agent_type ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 36 ; + sh:path rdf:type ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:original_object ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:object_closure ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "gene in which variation is correlated with the phenotypic feature" ; sh:maxCount 1 ; @@ -31424,274 +32800,230 @@ biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNodeOrIRI ; sh:order 2 ; sh:path rdf:subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:object_direction_qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 24 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 43 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path biolink:deprecated ], + sh:order 44 ; + sh:path biolink:has_percentage ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:object_category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path biolink:has_count ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 14 ; - sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:original_object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path rdf:predicate ], + sh:order 16 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_namespace ], + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 39 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path biolink:category ], + sh:order 34 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 29 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:iri ], + sh:order 17 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:subject_category_closure ], + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 47 ; - sh:path biolink:qualified_predicate ], + sh:order 33 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 27 ; sh:path biolink:object_namespace ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + [ sh:datatype ; + sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path rdf:type ], + sh:order 48 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 40 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 22 ; - sh:path biolink:subject_closure ], + sh:order 28 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:has_total ], - [ sh:description "a human-readable description of an entity" ; + sh:order 41 ; + sh:path biolink:has_count ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 18 ; + sh:path biolink:original_predicate ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:negated ], + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:knowledge_level ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:sex_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 45 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:qualifier ], + sh:order 26 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 35 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:adjusted_p_value ], - [ sh:datatype xsd:double ; + sh:order 3 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 43 ; - sh:path biolink:has_quotient ], + sh:order 46 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 47 ; + sh:path biolink:qualified_predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_subject ], + sh:order 42 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:timepoint ], + sh:order 22 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 30 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 31 ; sh:path biolink:p_value ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:id ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:agent_type ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path rdfs:label ] ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category ] ; sh:targetClass biolink:GeneToDiseaseOrPhenotypicFeatureAssociation . biolink:NoncodingRNAProduct a sh:NodeShape ; rdfs:subClassOf biolink:RNAProduct ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], + sh:order 3 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -31699,46 +33031,50 @@ biolink:NoncodingRNAProduct a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:category ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:full_name ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; @@ -31756,60 +33092,50 @@ biolink:OrganismTaxonToOrganismTaxonAssociation a sh:NodeShape ; sh:closed false ; sh:description "A relationship between two organism taxon nodes" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -31817,28 +33143,22 @@ biolink:OrganismTaxonToOrganismTaxonAssociation a sh:NodeShape ; sh:order 24 ; sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 34 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -31846,108 +33166,115 @@ biolink:OrganismTaxonToOrganismTaxonAssociation a sh:NodeShape ; sh:order 23 ; sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 35 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 25 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 29 ; sh:path biolink:adjusted_p_value ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OrganismTaxon ; sh:description "organism taxon that is the subject of the association" ; sh:maxCount 1 ; @@ -31955,22 +33282,36 @@ biolink:OrganismTaxonToOrganismTaxonAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ] ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ] ; sh:targetClass biolink:OrganismTaxonToOrganismTaxonAssociation . biolink:Outcome a sh:NodeShape ; @@ -31990,48 +33331,39 @@ biolink:RNAProduct a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:xref ], + sh:order 8 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:order 5 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; + sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:in_taxon_label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -32039,28 +33371,43 @@ biolink:RNAProduct a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ] ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:xref ] ; sh:targetClass biolink:RNAProduct . biolink:RegulatoryRegion a sh:NodeShape ; @@ -32068,37 +33415,46 @@ biolink:RegulatoryRegion a sh:NodeShape ; sh:closed true ; sh:description "A region (or regions) of the genome that contains known or putative regulatory elements that act in cis- or trans- to affect the transcription of gene" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:full_name ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], + sh:order 8 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:category ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + [ sh:datatype xsd:string ; + sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], + sh:order 0 ; + sh:path biolink:has_biological_sequence ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -32106,45 +33462,43 @@ biolink:RegulatoryRegion a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path rdfs:label ], - [ sh:description "connects a genomic feature to its sequence" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "a human-readable description of an entity" ; + sh:order 3 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:provided_by ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:iri ] ; + sh:order 5 ; + sh:path biolink:xref ] ; sh:targetClass biolink:RegulatoryRegion . biolink:Drug a sh:NodeShape ; @@ -32153,16 +33507,18 @@ biolink:Drug a sh:NodeShape ; sh:description "A substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:trade_name ], - [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:provided_by ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 4 ; + sh:path biolink:routes_of_delivery ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 6 ; + sh:path biolink:available_from ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; @@ -32176,91 +33532,94 @@ biolink:Drug a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:synonym ], - [ sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; - sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:drug_regulatory_status_world_wide ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:xref ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_chemical_role ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 4 ; - sh:path biolink:routes_of_delivery ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 6 ; - sh:path biolink:available_from ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path dct:description ], [ sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:highest_FDA_approval_status ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:deprecated ], + sh:order 5 ; + sh:path biolink:trade_name ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 18 ; + sh:path dct:description ], + [ sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:max_tolerated_dose ], [ sh:datatype xsd:string ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:is_supplement ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:max_tolerated_dose ] ; + sh:order 17 ; + sh:path rdfs:label ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_chemical_role ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path rdf:type ] ; sh:targetClass biolink:Drug . biolink:ExposureEvent a sh:NodeShape ; @@ -32268,7 +33627,8 @@ biolink:ExposureEvent a sh:NodeShape ; sh:closed false ; sh:description "A (possibly time bounded) incidence of a feature of the environment of an organism that influences one or more phenotypic features of that organism, potentially mediated by genes" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; + sh:property [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; @@ -32288,190 +33648,172 @@ biolink:GeneToGeneAssociation a sh:NodeShape ; sh:description "abstract parent class for different kinds of gene-gene or gene product to gene product relationships. Includes homology and interaction." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a point in time" ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:order 35 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; sh:order 33 ; sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], + sh:order 32 ; + sh:path biolink:category ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 37 ; sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 0 ; - sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 16 ; sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 25 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 26 ; sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 31 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -32480,28 +33822,51 @@ biolink:GeneToGeneAssociation a sh:NodeShape ; sh:order 11 ; sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; - sh:path biolink:subject_category_closure ] ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:qualifier ] ; sh:targetClass biolink:GeneToGeneAssociation . biolink:IndividualOrganism a sh:NodeShape ; @@ -32514,73 +33879,79 @@ biolink:IndividualOrganism a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ] ; + sh:order 5 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:IndividualOrganism . biolink:MaterialSample a sh:NodeShape ; @@ -32588,34 +33959,17 @@ biolink:MaterialSample a sh:NodeShape ; sh:closed true ; sh:description "A sample is a limited quantity of something (e.g. an individual or set of individuals from a population, or a portion of a substance) to be used for testing, analysis, inspection, investigation, demonstration, or trial use. [SIO]" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:category ], + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -32623,90 +33977,98 @@ biolink:MaterialSample a sh:NodeShape ; sh:order 11 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:synonym ], + sh:order 9 ; + sh:path dct:description ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:MaterialSample . - -biolink:Pathway a sh:NodeShape ; - rdfs:subClassOf biolink:BiologicalProcess ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; + sh:order 6 ; sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], + sh:order 2 ; + sh:path biolink:full_name ] ; + sh:targetClass biolink:MaterialSample . + +biolink:Pathway a sh:NodeShape ; + rdfs:subClassOf biolink:BiologicalProcess ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:order 5 ; + sh:path biolink:in_taxon_label ], [ sh:class biolink:PhysicalEntity ; sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:enabled_by ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_input ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:in_taxon_label ], + sh:order 11 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path rdfs:label ], + sh:order 9 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -32719,26 +34081,46 @@ biolink:Pathway a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_output ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], - [ sh:description "a human-readable description of an entity" ; + sh:order 16 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; @@ -32751,35 +34133,21 @@ biolink:PlanetaryEntity a sh:NodeShape ; sh:description "Any entity or process that exists at the level of the whole planet" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; @@ -32793,25 +34161,44 @@ biolink:PlanetaryEntity a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path rdfs:label ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 1 ; - sh:path biolink:xref ] ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:iri ] ; sh:targetClass biolink:PlanetaryEntity . biolink:RelationshipQuantifier a sh:NodeShape ; @@ -32824,29 +34211,23 @@ biolink:SequenceFeatureRelationship a sh:NodeShape ; sh:closed true ; sh:description "For example, a particular exon is part of a particular transcript or gene" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], - [ sh:datatype xsd:boolean ; + sh:property [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:negated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:NucleicAcidEntity ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -32854,106 +34235,45 @@ biolink:SequenceFeatureRelationship a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 35 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 30 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], [ sh:defaultValue "not_provided" ; sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; @@ -32962,83 +34282,155 @@ biolink:SequenceFeatureRelationship a sh:NodeShape ; sh:order 11 ; sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:NucleicAcidEntity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; sh:order 33 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:description "a point in time" ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:timepoint ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:NucleicAcidEntity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ] ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:subject_namespace ] ; sh:targetClass biolink:SequenceFeatureRelationship . biolink:Transcript a sh:NodeShape ; @@ -33046,78 +34438,84 @@ biolink:Transcript a sh:NodeShape ; sh:closed true ; sh:description "An RNA synthesized on a DNA or RNA template by an RNA polymerase." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:category ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ] ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path rdf:type ] ; sh:targetClass biolink:Transcript . biolink:ChemicalMixture a sh:NodeShape ; @@ -33125,71 +34523,68 @@ biolink:ChemicalMixture a sh:NodeShape ; sh:closed true ; sh:description "A chemical mixture is a chemical entity composed of two or more molecular entities." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:property [ sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:max_tolerated_dose ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:order 18 ; + sh:path dct:description ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 16 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:full_name ], + sh:order 13 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:trade_name ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 0 ; + sh:path biolink:is_supplement ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:iri ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:boolean ; + sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path dct:description ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 7 ; + sh:path biolink:is_toxic ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:deprecated ], + sh:order 6 ; + sh:path biolink:max_tolerated_dose ], [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path rdf:type ], + sh:order 17 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:provided_by ], + sh:order 4 ; + sh:path biolink:trade_name ], [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; @@ -33200,40 +34595,48 @@ biolink:ChemicalMixture a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:id ], + sh:order 15 ; + sh:path biolink:category ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 20 ; + sh:path biolink:deprecated ], [ sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:drug_regulatory_status_world_wide ], [ sh:datatype xsd:string ; - sh:description "" ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:is_supplement ], - [ sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; - sh:in ( "discovery_and_development_phase" "preclinical_research_phase" "fda_clinical_research_phase" "fda_review_phase_4" "fda_post_market_safety_review" "fda_clinical_research_phase_1" "fda_clinical_research_phase_2" "fda_clinical_research_phase_3" "fda_clinical_research_phase_4" "fda_fast_track" "fda_breakthrough_therapy" "fda_accelerated_approval" "fda_priority_review" "regular_fda_approval" "post_approval_withdrawal" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], - [ sh:datatype xsd:boolean ; - sh:description "" ; - sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:is_toxic ] ; + sh:order 12 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:ChemicalMixture . biolink:ClinicalAttribute a sh:NodeShape ; @@ -33241,86 +34644,91 @@ biolink:ClinicalAttribute a sh:NodeShape ; sh:closed true ; sh:description "Attributes relating to a clinical manifestation" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path rdfs:label ], + sh:order 8 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], + sh:order 4 ; + sh:path biolink:iri ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:xref ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNodeOrIRI ; sh:order 2 ; sh:path biolink:has_quantitative_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:iri ], + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], + sh:order 12 ; + sh:path dct:description ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ] ; + sh:order 1 ; + sh:path biolink:has_attribute_type ] ; sh:targetClass biolink:ClinicalAttribute . biolink:FunctionalAssociation a sh:NodeShape ; @@ -33328,186 +34736,185 @@ biolink:FunctionalAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a macromolecular machine mixin (gene, gene product or complex of gene products) and either a molecular activity, a biological process or a cellular location in which a function is executed." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:original_subject ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 23 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:float ; - sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:p_value ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; + sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], + sh:order 12 ; + sh:path biolink:agent_type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:order 31 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "class describing the activity, process or localization of the gene product" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:datatype xsd:float ; + sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 28 ; + sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 26 ; sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 34 ; sh:path rdfs:label ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:description "a point in time" ; + sh:order 29 ; + sh:path biolink:adjusted_p_value ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "class describing the activity, process or localization of the gene product" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; - sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:agent_type ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; @@ -33519,30 +34926,36 @@ biolink:FunctionalAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:order 35 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 0 ; - sh:path rdf:subject ] ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:nodeKind sh:Literal ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ] ; sh:targetClass biolink:FunctionalAssociation . biolink:LifeStage a sh:NodeShape ; @@ -33550,16 +34963,17 @@ biolink:LifeStage a sh:NodeShape ; sh:closed true ; sh:description "A stage of development or growth of an organism, including post-natal adult stages" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; @@ -33574,54 +34988,59 @@ biolink:LifeStage a sh:NodeShape ; sh:order 6 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "a human-readable description of an entity" ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ] ; + sh:order 11 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:LifeStage . biolink:NucleicAcidEntity a sh:NodeShape ; @@ -33630,37 +35049,11 @@ biolink:NucleicAcidEntity a sh:NodeShape ; sh:description "A nucleic acid entity is a molecular entity characterized by availability in gene databases of nucleotide-based sequence representations of its precise sequence; for convenience of representation, partial sequences of various kinds are included." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:boolean ; - sh:description "" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:is_toxic ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_chemical_role ], - [ sh:datatype xsd:boolean ; sh:description "indicates whether a molecular entity is a metabolite" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:is_metabolite ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 6 ; - sh:path biolink:available_from ], - [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:trade_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -33668,18 +35061,18 @@ biolink:NucleicAcidEntity a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:order 16 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:max_tolerated_dose ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:synonym ], @@ -33688,57 +35081,90 @@ biolink:NucleicAcidEntity a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_chemical_role ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path dct:description ], + sh:order 20 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:max_tolerated_dose ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 2 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 17 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 6 ; + sh:path biolink:available_from ], + [ sh:datatype xsd:string ; + sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:trade_name ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:deprecated ], - [ sh:description "connects a genomic feature to its sequence" ; + sh:order 15 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:has_biological_sequence ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 12 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ] ; + sh:order 18 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:is_toxic ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:NucleicAcidEntity . biolink:CellularOrganism a sh:NodeShape ; @@ -33746,59 +35172,61 @@ biolink:CellularOrganism a sh:NodeShape ; sh:closed true ; sh:description "" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:in_taxon_label ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -33806,184 +35234,204 @@ biolink:CellularOrganism a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ] ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:CellularOrganism . biolink:GeneToDiseaseAssociation a sh:NodeShape ; rdfs:subClassOf biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:sex_qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 20 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:object_direction_qualifier ], + sh:nodeKind sh:Literal ; + sh:order 40 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path biolink:id ], + sh:order 19 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category ], [ sh:datatype ; sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 48 ; sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:nodeKind sh:Literal ; - sh:order 44 ; - sh:path biolink:has_percentage ], + sh:order 36 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 27 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 33 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category ], - [ sh:description "a point in time" ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 34 ; + sh:path biolink:iri ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:subject_category_closure ], + sh:order 30 ; + sh:path biolink:retrieval_source_ids ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:float ; sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 32 ; sh:path biolink:adjusted_p_value ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "absorption" "aggregation" "interaction" "release" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 26 ; - sh:path biolink:subject_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 35 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 37 ; - sh:path rdfs:label ], + sh:order 16 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:double ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 43 ; sh:path biolink:has_quotient ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 28 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 40 ; - sh:path biolink:deprecated ], + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 41 ; - sh:path biolink:has_count ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is correlated with the disease, may be protective or causative or associative, or as a model" ; + sh:order 23 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 46 ; sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 42 ; - sh:path biolink:has_total ], + sh:order 18 ; + sh:path biolink:original_predicate ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 45 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 35 ; - sh:path biolink:category ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 14 ; - sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 47 ; sh:path biolink:qualified_predicate ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 38 ; - sh:path dct:description ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -33991,33 +35439,52 @@ biolink:GeneToDiseaseAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 15 ; sh:path biolink:agent_type ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 44 ; + sh:path biolink:has_percentage ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 41 ; + sh:path biolink:has_count ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is correlated with the disease, may be protective or causative or associative, or as a model" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 17 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 39 ; + sh:path biolink:has_attribute ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 22 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 31 ; sh:path biolink:p_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -34026,81 +35493,51 @@ biolink:GeneToDiseaseAssociation a sh:NodeShape ; sh:order 2 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:object_closure ], + sh:order 26 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:original_object ], + sh:order 27 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 36 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 39 ; - sh:path biolink:has_attribute ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 29 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 45 ; - sh:path biolink:subject_direction_qualifier ], + sh:nodeKind sh:Literal ; + sh:order 42 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], + sh:order 37 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 22 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:negated ] ; + sh:order 38 ; + sh:path dct:description ] ; sh:targetClass biolink:GeneToDiseaseAssociation . biolink:MolecularActivity a sh:NodeShape ; @@ -34108,93 +35545,99 @@ biolink:MolecularActivity a sh:NodeShape ; sh:closed true ; sh:description "An execution of a molecular function carried out by a gene product or macromolecular complex." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], + sh:property [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "The gene product, gene, or complex that catalyzes the reaction" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 3 ; + sh:path biolink:enabled_by ], [ sh:class biolink:MolecularEntity ; sh:description "A chemical entity that is the output for the reaction" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_output ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + sh:order 14 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path rdfs:label ], + sh:order 12 ; + sh:path rdf:type ], + [ sh:class biolink:MolecularEntity ; + sh:description "A chemical entity that is the input for the reaction" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_input ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:id ], + sh:order 11 ; + sh:path biolink:category ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:in_taxon ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "The gene product, gene, or complex that catalyzes the reaction" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 3 ; - sh:path biolink:enabled_by ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:in_taxon_label ], - [ sh:class biolink:MolecularEntity ; - sh:description "A chemical entity that is the input for the reaction" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:iri ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path dct:description ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:category ] ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:MolecularActivity . biolink:PopulationOfIndividualOrganisms a sh:NodeShape ; @@ -34202,78 +35645,84 @@ biolink:PopulationOfIndividualOrganisms a sh:NodeShape ; sh:closed true ; sh:description "A collection of individuals from the same taxonomic class distinguished by one or more characteristics. Characteristics can include, but are not limited to, shared geographic location, genetics, phenotypes." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; + sh:property [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path rdf:type ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ] ; + sh:order 11 ; + sh:path dct:description ] ; sh:targetClass biolink:PopulationOfIndividualOrganisms . biolink:StudyResult a sh:NodeShape ; @@ -34281,65 +35730,35 @@ biolink:StudyResult a sh:NodeShape ; sh:closed false ; sh:description "A collection of data items from a study that are about a particular study subject or experimental unit (the 'focus' of the Result) - optionally with context/provenance metadata that may be relevant to the interpretation of this data as evidence." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:datatype xsd:date ; + sh:property [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], + sh:order 1 ; + sh:path biolink:rights ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:format ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:license ], + sh:order 10 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; @@ -34348,116 +35767,157 @@ biolink:StudyResult a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path rdf:type ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ] ; - sh:targetClass biolink:StudyResult . - -biolink:BiologicalProcess a sh:NodeShape ; - rdfs:subClassOf biolink:BiologicalProcessOrActivity ; - sh:closed true ; - sh:description "One or more causally connected executions of molecular functions" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 6 ; + sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; + sh:order 8 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path rdfs:label ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:in_taxon_label ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], - [ sh:class biolink:OrganismTaxon ; + sh:order 9 ; + sh:path biolink:iri ] ; + sh:targetClass biolink:StudyResult . + +biolink:BiologicalProcess a sh:NodeShape ; + rdfs:subClassOf biolink:BiologicalProcessOrActivity ; + sh:closed true ; + sh:description "One or more causally connected executions of molecular functions" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:in_taxon ], + [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:enabled_by ], [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdf:type ], + sh:order 10 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 16 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:order 5 ; + sh:path biolink:in_taxon_label ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:enabled_by ], + sh:order 1 ; + sh:path biolink:has_input ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_output ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; - sh:path biolink:has_attribute ] ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:id ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:BiologicalProcess . biolink:ChemicalEntityOrGeneOrGeneProduct a sh:NodeShape ; @@ -34470,7 +35930,8 @@ biolink:MacromolecularMachineMixin a sh:NodeShape ; sh:closed false ; sh:description "A union of gene locus, gene product, and macromolecular complex. These are the basic units of function in a cell. They either carry out individual biological activities, or they encode molecules which do this." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:property [ sh:datatype xsd:string ; + sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; @@ -34488,25 +35949,28 @@ biolink:PhysicalEntity a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 9 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:synonym ], + sh:order 7 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -34515,35 +35979,37 @@ biolink:PhysicalEntity a sh:NodeShape ; sh:order 4 ; sh:path biolink:id ], [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path rdf:type ], + sh:order 8 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:full_name ] ; + sh:order 0 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:PhysicalEntity . biolink:Genotype a sh:NodeShape ; @@ -34551,25 +36017,34 @@ biolink:Genotype a sh:NodeShape ; sh:closed true ; sh:description "An information content entity that describes a genome by specifying the total variation in genomic sequence and/or gene expression, relative to some established background" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:xref ], + [ sh:class biolink:Zygosity ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_zygosity ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:full_name ], + sh:order 2 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:synonym ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; @@ -34577,62 +36052,60 @@ biolink:Genotype a sh:NodeShape ; sh:order 10 ; sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:id ], + sh:order 4 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:in_taxon ], + sh:order 1 ; + sh:path biolink:has_biological_sequence ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:provided_by ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:in_taxon_label ], - [ sh:class biolink:Zygosity ; - sh:maxCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_zygosity ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:xref ], - [ sh:description "connects a genomic feature to its sequence" ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:iri ] ; + sh:order 7 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:Genotype . biolink:MolecularEntity a sh:NodeShape ; @@ -34640,52 +36113,33 @@ biolink:MolecularEntity a sh:NodeShape ; sh:closed true ; sh:description "A molecular entity is a chemical entity composed of individual or covalently bonded atoms." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:trade_name ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:anyURI ; + sh:property [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path biolink:deprecated ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:has_chemical_role ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 10 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:iri ], + sh:order 1 ; + sh:path biolink:trade_name ], [ sh:description "" ; sh:in ( "over_the_counter" "prescription" ) ; sh:order 2 ; sh:path biolink:available_from ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path rdfs:label ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; @@ -34693,48 +36147,72 @@ biolink:MolecularEntity a sh:NodeShape ; sh:order 12 ; sh:path biolink:category ], [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], + sh:order 15 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "indicates whether a molecular entity is a metabolite" ; + sh:order 14 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:is_metabolite ], + sh:order 8 ; + sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:is_toxic ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path dct:description ], + sh:order 11 ; + sh:path biolink:iri ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:has_chemical_role ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:id ], + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; - sh:path biolink:max_tolerated_dose ] ; + sh:path biolink:max_tolerated_dose ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 17 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "indicates whether a molecular entity is a metabolite" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:is_metabolite ] ; sh:targetClass biolink:MolecularEntity . biolink:OrganismalEntity a sh:NodeShape ; @@ -34743,21 +36221,27 @@ biolink:OrganismalEntity a sh:NodeShape ; sh:description "A named entity that is either a part of an organism, a whole organism, population or clade of organisms, excluding chemical entities" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 9 ; @@ -34770,50 +36254,50 @@ biolink:OrganismalEntity a sh:NodeShape ; sh:order 6 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ] ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:in_taxon_label ] ; sh:targetClass biolink:OrganismalEntity . biolink:SequenceVariant a sh:NodeShape ; @@ -34821,70 +36305,67 @@ biolink:SequenceVariant a sh:NodeShape ; sh:closed true ; sh:description "A sequence_variant is a non exact copy of a sequence_feature or genome exhibiting one or more sequence_alteration." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:anyURI ; + sh:property [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:xref ], - [ sh:description "The state of the sequence w.r.t a reference sequence" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The state of the sequence w.r.t a reference sequence" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:has_biological_sequence ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path rdfs:label ], - [ sh:class biolink:Gene ; - sh:description "Each allele can be associated with any number of genes" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_gene ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:in_taxon ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:in_taxon_label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 5 ; + sh:path biolink:provided_by ], + [ sh:class biolink:Gene ; + sh:description "Each allele can be associated with any number of genes" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_gene ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -34892,11 +36373,21 @@ biolink:SequenceVariant a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:id ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:in_taxon ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:provided_by ], + sh:order 8 ; + sh:path biolink:synonym ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; @@ -34910,27 +36401,12 @@ biolink:Agent a sh:NodeShape ; sh:closed true ; sh:description "person, group, organization or project that provides a piece of information (i.e. a knowledge association)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; @@ -34940,6 +36416,12 @@ biolink:Agent a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:affiliation ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "Different classes of agents have distinct preferred identifiers. For publishers, use the ISBN publisher code. See https://grp.isbn-international.org/ for publisher code lookups. For editors, authors and individual providers, use the individual's ORCID if available; Otherwise, a ScopusID, ResearchID or Google Scholar ID ('GSID') may be used if the author ORCID is unknown. Institutional agents could be identified by an International Standard Name Identifier ('ISNI') code." ; sh:maxCount 1 ; @@ -34947,42 +36429,56 @@ biolink:Agent a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "the particulars of the place where someone or an organization is situated. For now, this slot is a simple text \"blob\" containing all relevant details of the given location for fitness of purpose. For the moment, this \"address\" can include other contact details such as email and phone number(?)." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:address ], [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "it is recommended that an author's 'name' property be formatted as \"surname, firstname initial.\"" ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "the particulars of the place where someone or an organization is situated. For now, this slot is a simple text \"blob\" containing all relevant details of the given location for fitness of purpose. For the moment, this \"address\" can include other contact details such as email and phone number(?)." ; + sh:description "it is recommended that an author's 'name' property be formatted as \"surname, firstname initial.\"" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:address ] ; + sh:order 10 ; + sh:path rdfs:label ] ; sh:targetClass biolink:Agent . biolink:ChemicalRole a sh:NodeShape ; @@ -34990,17 +36486,11 @@ biolink:ChemicalRole a sh:NodeShape ; sh:closed true ; sh:description "A role played by the molecular entity or part thereof within a chemical context." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ], + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 11 ; @@ -35011,24 +36501,50 @@ biolink:ChemicalRole a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:id ], + sh:order 7 ; + sh:path biolink:xref ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -35036,40 +36552,25 @@ biolink:ChemicalRole a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 12 ; sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ] ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:id ] ; sh:targetClass biolink:ChemicalRole . biolink:InformationContentEntity a sh:NodeShape ; @@ -35077,40 +36578,16 @@ biolink:InformationContentEntity a sh:NodeShape ; sh:closed false ; sh:description "a piece of information that typically describes some topic of discourse or is used as support." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:format ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 1 ; + sh:path biolink:rights ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; @@ -35123,43 +36600,72 @@ biolink:InformationContentEntity a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:license ], + sh:order 5 ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:provided_by ], [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:iri ], + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:rights ], + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; - sh:path biolink:id ] ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 0 ; + sh:path biolink:license ] ; sh:targetClass biolink:InformationContentEntity . biolink:PhenotypicFeature a sh:NodeShape ; @@ -35167,61 +36673,43 @@ biolink:PhenotypicFeature a sh:NodeShape ; sh:closed true ; sh:description "A combination of entity and quality that makes up a phenotyping statement. An observable characteristic of an individual resulting from the interaction of its genotype with its molecular and physical environment." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path rdf:type ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -35229,16 +36717,40 @@ biolink:PhenotypicFeature a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ] ; + sh:order 1 ; + sh:path biolink:in_taxon_label ] ; sh:targetClass biolink:PhenotypicFeature . biolink:ChemicalEntity a sh:NodeShape ; @@ -35247,94 +36759,99 @@ biolink:ChemicalEntity a sh:NodeShape ; sh:description "A chemical entity is a physical entity that pertains to chemistry or biochemistry." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "" ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:trade_name ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:max_tolerated_dose ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:id ], + sh:order 13 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:is_toxic ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path rdfs:label ], + sh:order 16 ; + sh:path biolink:deprecated ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 1 ; + sh:path biolink:available_from ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:max_tolerated_dose ], + sh:order 14 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:provided_by ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 1 ; - sh:path biolink:available_from ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_chemical_role ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], + sh:order 9 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:full_name ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + sh:order 10 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path dct:description ] ; + sh:order 0 ; + sh:path biolink:trade_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_chemical_role ] ; sh:targetClass biolink:ChemicalEntity . biolink:Gene a sh:NodeShape ; @@ -35342,141 +36859,109 @@ biolink:Gene a sh:NodeShape ; sh:closed true ; sh:description "A region (or regions) that includes all of the sequence elements necessary to encode a functional transcript. A gene locus may include regulatory regions, transcribed regions and/or other functional sequence regions." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:description "Symbol for a particular thing" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], + sh:order 0 ; + sh:path biolink:symbol ], [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 8 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "connects a genomic feature to its sequence" ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:has_biological_sequence ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 5 ; + sh:path biolink:in_taxon_label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Symbol for a particular thing" ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:symbol ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:in_taxon_label ], + sh:order 7 ; + sh:path biolink:full_name ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 1 ; - sh:path biolink:xref ] ; - sh:targetClass biolink:Gene . - -biolink:DiseaseOrPhenotypicFeature a sh:NodeShape ; - rdfs:subClassOf biolink:BiologicalEntity ; - sh:closed true ; - sh:description "Either one of a disease or an individual phenotypic feature. Some knowledge resources such as Monarch treat these as distinct, others such as MESH conflate. Please see definitions of phenotypic feature and disease in this model for their independent descriptions. This class is helpful to enforce domains and ranges that may involve either a disease or a phenotypic feature." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + sh:order 10 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "a long-form human readable name for a thing" ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; + sh:order 12 ; sh:path rdfs:label ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 0 ; + sh:order 4 ; sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path dct:description ] ; + sh:targetClass biolink:Gene . + +biolink:DiseaseOrPhenotypicFeature a sh:NodeShape ; + rdfs:subClassOf biolink:BiologicalEntity ; + sh:closed true ; + sh:description "Either one of a disease or an individual phenotypic feature. Some knowledge resources such as Monarch treat these as distinct, others such as MESH conflate. Please see definitions of phenotypic feature and disease in this model for their independent descriptions. This class is helpful to enforce domains and ranges that may involve either a disease or a phenotypic feature." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -35484,26 +36969,71 @@ biolink:DiseaseOrPhenotypicFeature a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:xref ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ] ; + sh:order 11 ; + sh:path dct:description ] ; sh:targetClass biolink:DiseaseOrPhenotypicFeature . biolink:Disease a sh:NodeShape ; @@ -35512,52 +37042,64 @@ biolink:Disease a sh:NodeShape ; sh:description "A disorder of structure or function, especially one that produces specific signs, phenotypes or symptoms or that affects a specific location and is not simply a direct result of physical injury. A disposition to undergo pathological processes that exists in an organism because of one or more disorders in that organism." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path dct:description ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:synonym ], @@ -35566,84 +37108,45 @@ biolink:Disease a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:deprecated ] ; + sh:order 3 ; + sh:path biolink:xref ] ; sh:targetClass biolink:Disease . biolink:BiologicalSex a sh:NodeShape ; rdfs:subClassOf biolink:Attribute ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:anyURI ; + sh:property [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 7 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], + sh:order 0 ; + sh:path rdfs:label ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ], + sh:order 4 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -35657,96 +37160,140 @@ biolink:BiologicalSex a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 5 ; - sh:path biolink:id ] ; - sh:targetClass biolink:BiologicalSex . - -biolink:BiologicalEntity a sh:NodeShape ; - rdfs:subClassOf biolink:NamedThing ; - sh:closed false ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 11 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:path rdf:type ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; + sh:order 14 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:anyURI ; + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:provided_by ] ; + sh:targetClass biolink:BiologicalSex . + +biolink:BiologicalEntity a sh:NodeShape ; + rdfs:subClassOf biolink:NamedThing ; + sh:closed false ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 11 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 2 ; - sh:path biolink:provided_by ] ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:iri ] ; sh:targetClass biolink:BiologicalEntity . biolink:AnatomicalEntity a sh:NodeShape ; @@ -35754,7 +37301,8 @@ biolink:AnatomicalEntity a sh:NodeShape ; sh:closed true ; sh:description "A subcellular location, cell type or gross anatomical part" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 4 ; @@ -35765,43 +37313,35 @@ biolink:AnatomicalEntity a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; @@ -35810,22 +37350,35 @@ biolink:AnatomicalEntity a sh:NodeShape ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path rdf:type ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:xref ] ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ] ; sh:targetClass biolink:AnatomicalEntity . biolink:GeneOrGeneProduct a sh:NodeShape ; @@ -35833,7 +37386,8 @@ biolink:GeneOrGeneProduct a sh:NodeShape ; sh:closed false ; sh:description "A union of gene loci or gene products. Frequently an identifier for one will be used as proxy for another" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:property [ sh:datatype xsd:string ; + sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; @@ -35864,40 +37418,63 @@ biolink:Association a sh:NodeShape ; sh:closed true ; sh:description "A typed association between two entities, supported by evidence" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 35 ; sh:path dct:description ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:float ; - sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 29 ; - sh:path biolink:adjusted_p_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:nodeKind sh:Literal ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:defaultValue "not_provided" ; + sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; + sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_level ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 14 ; sh:path biolink:original_subject ], + [ sh:datatype xsd:anyURI ; + sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:Literal ; + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:defaultValue "not_provided" ; sh:description "Describes the high-level category of agent who originally generated a statement of knowledge or other type of information." ; sh:in ( "manual_agent" "automated_agent" "data_analysis_pipeline" "computational_model" "text_mining_agent" "image_processing_agent" "manual_validation_of_automated_agent" "not_provided" ) ; @@ -35905,99 +37482,99 @@ biolink:Association a sh:NodeShape ; sh:minCount 1 ; sh:order 12 ; sh:path biolink:agent_type ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 33 ; - sh:path rdf:type ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:order 18 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 30 ; + sh:path biolink:id ], [ sh:datatype xsd:float ; sh:description "A quantitative confidence value that represents the probability of obtaining a result at least as extreme as that actually obtained, assuming that the actual value was the result of chance alone." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 28 ; sh:path biolink:p_value ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:description "a point in time" ; + sh:description "a point in time" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 13 ; sh:path biolink:timepoint ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path biolink:subject_closure ], + sh:order 31 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:float ; + sh:description "The adjusted p-value is the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that the null hypothesis is correct, adjusted for multiple comparisons. P is always italicized and capitalized. The actual P value* should be expressed (P=. 04) rather than expressing a statement of inequality (P<. 05), unless P<." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 29 ; + sh:path biolink:adjusted_p_value ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:defaultValue "not_provided" ; - sh:description "Describes the level of knowledge expressed in a statement, based on the reasoning or analysis methods used to generate the statement, or the scope or specificity of what the statement expresses to be true." ; - sh:in ( "knowledge_assertion" "logical_entailment" "prediction" "statistical_association" "observation" "not_provided" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_level ], + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -36005,57 +37582,34 @@ biolink:Association a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:nodeKind sh:Literal ; - sh:order 32 ; - sh:path biolink:category ], + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 25 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:Literal ; sh:order 26 ; sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:anyURI ; - sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -36063,22 +37617,27 @@ biolink:Association a sh:NodeShape ; sh:order 37 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 34 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:nodeKind sh:Literal ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:qualifier ] ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ] ; sh:targetClass biolink:Association . biolink:OrganismTaxon a sh:NodeShape ; @@ -36086,73 +37645,78 @@ biolink:OrganismTaxon a sh:NodeShape ; sh:closed true ; sh:description "A classification of a set of organisms. Example instances: NCBITaxon:9606 (Homo sapiens), NCBITaxon:2 (Bacteria). Can also be used to represent strains or subspecies." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 11 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 3 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:xref ], [ sh:class biolink:TaxonomicRank ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:has_taxonomic_rank ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 8 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 10 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:iri ], + sh:order 12 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:category ] ; + sh:order 9 ; + sh:path rdfs:label ] ; sh:targetClass biolink:OrganismTaxon . biolink:EvidenceType a sh:NodeShape ; @@ -36160,27 +37724,43 @@ biolink:EvidenceType a sh:NodeShape ; sh:closed true ; sh:description "Class of evidence that supports an association" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -36189,60 +37769,49 @@ biolink:EvidenceType a sh:NodeShape ; sh:order 8 ; sh:path biolink:id ], [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:rights ], + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:license ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:creation_date ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:format ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:category ], + sh:order 12 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path rdf:type ] ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 15 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:EvidenceType . biolink:RetrievalSource a sh:NodeShape ; @@ -36251,107 +37820,112 @@ biolink:RetrievalSource a sh:NodeShape ; sh:description "Provides information about how a particular InformationResource served as a source from which knowledge expressed in an Edge, or data used to generate this knowledge, was retrieved." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:id ], + sh:order 8 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:license ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:anyURI ; + sh:description "The InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path biolink:deprecated ], + sh:order 0 ; + sh:path biolink:resource_id ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:format ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:rights ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:order 14 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:creation_date ], + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:provided_by ], + sh:order 4 ; + sh:path biolink:license ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:xref ], - [ sh:datatype xsd:anyURI ; - sh:description "The InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path biolink:iri ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 0 ; - sh:path biolink:resource_id ], + sh:order 13 ; + sh:path biolink:category ], [ sh:datatype xsd:anyURI ; sh:description "The InformationResources that served as a source for the InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 2 ; sh:path biolink:upstream_resource_ids ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 18 ; + sh:path biolink:deprecated ], [ sh:description "The role of the InformationResource in the retrieval of the knowledge expressed in an Edge, or data used to generate this knowledge." ; sh:in ( "primary_knowledge_source" "aggregator_knowledge_source" "supporting_data_source" ) ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path biolink:resource_role ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + sh:order 5 ; + sh:path biolink:rights ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path dct:description ], + sh:order 7 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:category ] ; + sh:order 15 ; + sh:path rdfs:label ] ; sh:targetClass biolink:RetrievalSource . biolink:Publication a sh:NodeShape ; @@ -36359,121 +37933,126 @@ biolink:Publication a sh:NodeShape ; sh:closed true ; sh:description "Any ‘published’ piece of information. Publications are considered broadly to include any document or document part made available in print or on the web - which may include scientific journal issues, individual articles, and books - as well as things like pre-prints, white papers, patents, drug labels, web pages, protocol documents, and even a part of a publication if of significant knowledge scope (e.g. a figure, figure legend, or section highlighted by NLP)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:date ; + sh:property [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; + sh:nodeKind sh:Literal ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:license ], + [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:creation_date ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 16 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 15 ; - sh:path biolink:iri ], + sh:order 2 ; + sh:path biolink:summary ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:nodeKind sh:Literal ; - sh:order 1 ; - sh:path biolink:pages ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 16 ; - sh:path biolink:category ], + sh:order 6 ; + sh:path dct:type ], [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:summary ], + sh:order 19 ; + sh:path dct:description ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:authors ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 8 ; + sh:path biolink:rights ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 9 ; sh:path biolink:format ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 21 ; - sh:path biolink:deprecated ], + sh:order 14 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:anyURI ; + sh:description "mesh terms tagging a publication" ; sh:nodeKind sh:Literal ; - sh:order 13 ; - sh:path biolink:synonym ], + sh:order 4 ; + sh:path biolink:mesh_terms ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 8 ; - sh:path biolink:rights ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 17 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:nodeKind sh:Literal ; + sh:order 1 ; + sh:path biolink:pages ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; + sh:order 21 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 19 ; - sh:path dct:description ], + sh:order 15 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "keywords tagging a publication" ; sh:nodeKind sh:Literal ; sh:order 3 ; sh:path biolink:keywords ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 18 ; - sh:path rdfs:label ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:authors ], [ sh:datatype xsd:string ; + sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path dct:type ], - [ sh:datatype xsd:string ; - sh:nodeKind sh:Literal ; - sh:order 17 ; - sh:path rdf:type ], - [ sh:datatype xsd:anyURI ; - sh:description "mesh terms tagging a publication" ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:mesh_terms ] ; + sh:order 18 ; + sh:path rdfs:label ] ; sh:targetClass biolink:Publication . biolink:NamedThing a sh:NodeShape ; @@ -36481,68 +38060,73 @@ biolink:NamedThing a sh:NodeShape ; sh:closed true ; sh:description "a databased entity or concept/class" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; - sh:order 2 ; - sh:path biolink:full_name ], + sh:order 9 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 7 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:datatype xsd:anyURI ; - sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 2 ; + sh:path biolink:full_name ], [ sh:datatype xsd:anyURI ; sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:nodeKind sh:Literal ; sh:order 1 ; sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:anyURI ; + sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 6 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 5 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 3 ; - sh:path biolink:synonym ] ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:NamedThing . biolink:Attribute a sh:NodeShape ; @@ -36551,73 +38135,72 @@ biolink:Attribute a sh:NodeShape ; sh:description "A property or characteristic of an entity. For example, an apple may have properties such as color, shape, age, crispiness. An environmental sample may have attributes such as depth, lat, long, material." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; + sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 8 ; sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:QuantityValue ; + [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNodeOrIRI ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:nodeKind sh:Literal ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:string ; + sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:nodeKind sh:Literal ; sh:order 0 ; sh:path rdfs:label ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNodeOrIRI ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:string ; sh:nodeKind sh:Literal ; sh:order 11 ; sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:datatype xsd:anyURI ; + sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:nodeKind sh:Literal ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:datatype xsd:anyURI ; sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:nodeKind sh:Literal ; sh:order 10 ; sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 12 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:nodeKind sh:Literal ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:nodeKind sh:Literal ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:Literal ; - sh:order 4 ; - sh:path biolink:iri ], + sh:order 5 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -36625,11 +38208,17 @@ biolink:Attribute a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:datatype xsd:anyURI ; - sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + [ sh:datatype xsd:string ; + sh:description "Alternate human-readable names for a thing" ; sh:nodeKind sh:Literal ; - sh:order 7 ; - sh:path biolink:xref ] ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:nodeKind sh:Literal ; + sh:order 14 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:Attribute . biolink:OntologyClass a sh:NodeShape ; diff --git a/project/shex/biolink_model.shex b/project/shex/biolink_model.shex index 3b523acf9..d0f15dadb 100644 --- a/project/shex/biolink_model.shex +++ b/project/shex/biolink_model.shex @@ -12,11 +12,11 @@ PREFIX dcterms: xsd:string - IRI + xsd:string xsd:string - IRI + xsd:string xsd:string @@ -30,7 +30,7 @@ PREFIX dcterms: UO:0000000 - xsd:time + xsd:string xsd:string @@ -256,9 +256,10 @@ linkml:Sparqlpath xsd:string @ OR @ OR @ OR @ OR @ OR @ OR @ OR - @ OR @ OR - @ OR @ OR @ OR - @ OR @ OR @ OR + @ OR @ OR + @ OR @ OR + @ OR @ OR @ OR + @ OR @ OR @ OR @ OR @ OR @ OR @ OR @ OR @ OR @ OR @ OR @ OR @@ -1311,6 +1312,23 @@ linkml:Sparqlpath xsd:string ) } + CLOSED { + ( $ ( & ; + rdf:type [ ] ? ; + [ + ] ? ; + [ + + + ] ? ; + rdf:subject @ ; + rdf:object @ ; + rdf:predicate @ + ) ; + rdf:type [ ] + ) +} + ( CLOSED { ( $ ( & ; diff --git a/src/biolink_model/datamodel/model.py b/src/biolink_model/datamodel/model.py index 39a583597..e2611ace1 100644 --- a/src/biolink_model/datamodel/model.py +++ b/src/biolink_model/datamodel/model.py @@ -1,5 +1,5 @@ # Auto generated from biolink_model.yaml by pythongen.py version: 0.0.1 -# Generation date: 2024-09-23T16:33:32 +# Generation date: 2024-09-23T16:40:10 # Schema: Biolink-Model # # id: https://w3id.org/biolink/biolink-model @@ -307,8 +307,8 @@ class ChemicalFormulaValue(str): class IriType(Uriorcurie): """ An IRI """ - type_class_uri = XSD["anyURI"] - type_class_curie = "xsd:anyURI" + type_class_uri = XSD["string"] + type_class_curie = "xsd:string" type_name = "iri type" type_model_uri = BIOLINK.IriType @@ -323,8 +323,8 @@ class LabelType(String): class PredicateType(Uriorcurie): """ A CURIE from the biolink related_to hierarchy. For example, biolink:related_to, biolink:causes, biolink:treats. """ - type_class_uri = XSD["anyURI"] - type_class_curie = "xsd:anyURI" + type_class_uri = XSD["string"] + type_class_curie = "xsd:string" type_name = "predicate type" type_model_uri = BIOLINK.PredicateType @@ -373,8 +373,8 @@ class Unit(String): class TimeType(Time): - type_class_uri = XSD["time"] - type_class_curie = "xsd:time" + type_class_uri = XSD["string"] + type_class_curie = "xsd:string" type_name = "time type" type_model_uri = BIOLINK.TimeType @@ -1027,6 +1027,10 @@ class AssociationId(EntityId): pass +class DiseaseAssociatedWithResponseToChemicalEntityAssociationId(AssociationId): + pass + + class ChemicalEntityAssessesNamedThingAssociationId(AssociationId): pass @@ -7495,6 +7499,61 @@ def __new__(cls, *args, **kwargs): +@dataclass(repr=False) +class DiseaseAssociatedWithResponseToChemicalEntityAssociation(Association): + """ + A statistical association between a disease and a chemical entity where the chemical entity has a therapeutic or + adverse effect on the disease progression, symptoms or outcomes in a patient, cell line, or any model system. + """ + _inherited_slots: ClassVar[List[str]] = [] + + class_class_uri: ClassVar[URIRef] = BIOLINK["DiseaseAssociatedWithResponseToChemicalEntityAssociation"] + class_class_curie: ClassVar[str] = "biolink:DiseaseAssociatedWithResponseToChemicalEntityAssociation" + class_name: ClassVar[str] = "disease associated with response to chemical entity association" + class_model_uri: ClassVar[URIRef] = BIOLINK.DiseaseAssociatedWithResponseToChemicalEntityAssociation + + id: Union[str, DiseaseAssociatedWithResponseToChemicalEntityAssociationId] = None + subject: Union[str, DiseaseId] = None + object: Union[str, ChemicalEntityId] = None + predicate: Union[str, PredicateType] = None + knowledge_level: Union[str, "KnowledgeLevelEnum"] = KnowledgeLevelEnum.not_provided + agent_type: Union[str, "AgentTypeEnum"] = AgentTypeEnum.not_provided + response_context_qualifier: Optional[Union[str, "ResponseEnum"]] = None + response_target_context_qualifier: Optional[Union[str, "ResponseTargetEnum"]] = None + + def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): + if self._is_empty(self.id): + self.MissingRequiredField("id") + if not isinstance(self.id, DiseaseAssociatedWithResponseToChemicalEntityAssociationId): + self.id = DiseaseAssociatedWithResponseToChemicalEntityAssociationId(self.id) + + if self._is_empty(self.subject): + self.MissingRequiredField("subject") + if not isinstance(self.subject, DiseaseId): + self.subject = DiseaseId(self.subject) + + if self._is_empty(self.object): + self.MissingRequiredField("object") + if not isinstance(self.object, ChemicalEntityId): + self.object = ChemicalEntityId(self.object) + + if self._is_empty(self.predicate): + self.MissingRequiredField("predicate") + if not isinstance(self.predicate, PredicateType): + self.predicate = PredicateType(self.predicate) + + if self.response_context_qualifier is not None and not isinstance(self.response_context_qualifier, ResponseEnum): + self.response_context_qualifier = ResponseEnum(self.response_context_qualifier) + + if self.response_target_context_qualifier is not None and not isinstance(self.response_target_context_qualifier, ResponseTargetEnum): + self.response_target_context_qualifier = ResponseTargetEnum(self.response_target_context_qualifier) + + super().__post_init__(**kwargs) + if not isinstance(self.category, list): + self.category = [self.category] if self.category is not None else [] + self.category = [v if isinstance(v, URIorCURIE) else URIorCURIE(v) for v in self.category] + + @dataclass(repr=False) class ChemicalEntityAssessesNamedThingAssociation(Association): _inherited_slots: ClassVar[List[str]] = [] @@ -13032,6 +13091,48 @@ def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): # Enumerations +class ResponseEnum(EnumDefinitionImpl): + """ + A response to a treatment or intervention + """ + therapeutic_response = PermissibleValue( + text="therapeutic_response", + description="A positive response to a treatment or intervention") + negative = PermissibleValue( + text="negative", + description="A negative response to a treatment or intervention") + + _defn = EnumDefinition( + name="ResponseEnum", + description="A response to a treatment or intervention", + ) + +class ResponseTargetEnum(EnumDefinitionImpl): + """ + The target of a treatment or intervention + """ + cohort = PermissibleValue( + text="cohort", + description="A group of individuals that are the target of a treatment or intervention") + individual = PermissibleValue( + text="individual", + description="An individual that is the target of a treatment or intervention") + sample = PermissibleValue( + text="sample", + description="A biological materialsample that is the target of a treatment or intervention") + + _defn = EnumDefinition( + name="ResponseTargetEnum", + description="The target of a treatment or intervention", + ) + + @classmethod + def _addvals(cls): + setattr(cls, "cell line", + PermissibleValue( + text="cell line", + description="A cell line that is the target of a treatment or intervention")) + class ApprovalStatusEnum(EnumDefinitionImpl): discovery_and_development_phase = PermissibleValue( @@ -13798,6 +13899,12 @@ class slots: slots.has_route = Slot(uri=BIOLINK.has_route, name="has route", curie=BIOLINK.curie('has_route'), model_uri=BIOLINK.has_route, domain=None, range=Optional[str]) +slots.response_context_qualifier = Slot(uri=BIOLINK.response_context_qualifier, name="response context qualifier", curie=BIOLINK.curie('response_context_qualifier'), + model_uri=BIOLINK.response_context_qualifier, domain=Association, range=Optional[Union[str, "ResponseEnum"]]) + +slots.response_target_context_qualifier = Slot(uri=BIOLINK.response_target_context_qualifier, name="response target context qualifier", curie=BIOLINK.curie('response_target_context_qualifier'), + model_uri=BIOLINK.response_target_context_qualifier, domain=Association, range=Optional[Union[str, "ResponseTargetEnum"]]) + slots.population_context_qualifier = Slot(uri=BIOLINK.population_context_qualifier, name="population context qualifier", curie=BIOLINK.curie('population_context_qualifier'), model_uri=BIOLINK.population_context_qualifier, domain=Association, range=Optional[Union[str, PopulationOfIndividualOrganismsId]]) @@ -14140,6 +14247,12 @@ class slots: slots.affected_by = Slot(uri=BIOLINK.affected_by, name="affected by", curie=BIOLINK.curie('affected_by'), model_uri=BIOLINK.affected_by, domain=NamedThing, range=Optional[Union[Union[str, NamedThingId], List[Union[str, NamedThingId]]]]) +slots.associated_with_response_to = Slot(uri=BIOLINK.associated_with_response_to, name="associated with response to", curie=BIOLINK.curie('associated_with_response_to'), + model_uri=BIOLINK.associated_with_response_to, domain=NamedThing, range=Optional[Union[Union[str, NamedThingId], List[Union[str, NamedThingId]]]]) + +slots.response_associated_with = Slot(uri=BIOLINK.response_associated_with, name="response associated with", curie=BIOLINK.curie('response_associated_with'), + model_uri=BIOLINK.response_associated_with, domain=NamedThing, range=Optional[Union[Union[str, NamedThingId], List[Union[str, NamedThingId]]]]) + slots.associated_with_sensitivity_to = Slot(uri=BIOLINK.associated_with_sensitivity_to, name="associated with sensitivity to", curie=BIOLINK.curie('associated_with_sensitivity_to'), model_uri=BIOLINK.associated_with_sensitivity_to, domain=NamedThing, range=Optional[Union[Union[str, ChemicalEntityId], List[Union[str, ChemicalEntityId]]]]) @@ -15037,6 +15150,15 @@ class slots: slots.association_category = Slot(uri=BIOLINK.category, name="association_category", curie=BIOLINK.curie('category'), model_uri=BIOLINK.association_category, domain=Association, range=Optional[Union[Union[str, URIorCURIE], List[Union[str, URIorCURIE]]]]) +slots.disease_associated_with_response_to_chemical_entity_association_subject = Slot(uri=RDF.subject, name="disease associated with response to chemical entity association_subject", curie=RDF.curie('subject'), + model_uri=BIOLINK.disease_associated_with_response_to_chemical_entity_association_subject, domain=DiseaseAssociatedWithResponseToChemicalEntityAssociation, range=Union[str, DiseaseId]) + +slots.disease_associated_with_response_to_chemical_entity_association_object = Slot(uri=RDF.object, name="disease associated with response to chemical entity association_object", curie=RDF.curie('object'), + model_uri=BIOLINK.disease_associated_with_response_to_chemical_entity_association_object, domain=DiseaseAssociatedWithResponseToChemicalEntityAssociation, range=Union[str, ChemicalEntityId]) + +slots.disease_associated_with_response_to_chemical_entity_association_predicate = Slot(uri=RDF.predicate, name="disease associated with response to chemical entity association_predicate", curie=RDF.curie('predicate'), + model_uri=BIOLINK.disease_associated_with_response_to_chemical_entity_association_predicate, domain=DiseaseAssociatedWithResponseToChemicalEntityAssociation, range=Union[str, PredicateType]) + slots.chemical_entity_assesses_named_thing_association_subject = Slot(uri=RDF.subject, name="chemical entity assesses named thing association_subject", curie=RDF.curie('subject'), model_uri=BIOLINK.chemical_entity_assesses_named_thing_association_subject, domain=ChemicalEntityAssessesNamedThingAssociation, range=Union[str, ChemicalEntityId]) diff --git a/src/biolink_model/schema/biolink_model.yaml b/src/biolink_model/schema/biolink_model.yaml index 72512a462..ff3fb65e2 100644 --- a/src/biolink_model/schema/biolink_model.yaml +++ b/src/biolink_model/schema/biolink_model.yaml @@ -213,27 +213,32 @@ types: - Should be implemented as a stronger type iri type: + uri: xsd:string typeof: uriorcurie description: >- An IRI label type: + uri: xsd:string typeof: string description: >- A string that provides a human-readable name for an entity predicate type: + uri: xsd:string typeof: uriorcurie description: >- A CURIE from the biolink related_to hierarchy. For example, biolink:related_to, biolink:causes, biolink:treats. narrative text: + uri: xsd:string typeof: string description: >- A string that provides a human-readable description of something symbol type: + uri: xsd:string typeof: string frequency value: @@ -258,9 +263,11 @@ types: - qud:Unit time type: + uri: xsd:string typeof: time biological sequence: + uri: xsd:string typeof: string ## ------------ @@ -1161,12 +1168,26 @@ slots: - SNOMED:has_route_of_administration + response context qualifier: + description: >- + a biological response (general, study, cohort, etc.) with a specific set of characteristics to constrain + an association. + is_a: context qualifier + range: ResponseEnum + + response target context qualifier: + description: >- + a biological response target (a patient, a cohort, a model system, a cell line, a sample of biological material, + etc.) + is_a: context qualifier + range: ResponseTargetEnum + population context qualifier: description: >- a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association. is_a: qualifier - range: population of individual organisms + range: population of individual organisms # TODO: harmonize with 'response target context qualifier' temporal context qualifier: description: >- @@ -2577,8 +2598,38 @@ slots: another existing entity. inverse: affects - associated with sensitivity to: + associated with response to: + is_a: associated with + description: >- + A statistical association used to indicate that the object of a statement using this predicate + induces a response of some kind in the subject entity. Intentionally broad in definition, this predicate + should be used with qualifiers to narrow the type of response (E.g. whether the response is therapeutic, + phenotypic, detrimental, resistant, etc. is captured in context, direction, and + aspect qualifiers). + annotations: + canonical_predicate: true + comments: >- + subject: NCBIGene:2064 # HER2 + subject_aspect: Amplification + predicate: associated with response to + object: CHEBI:10035 # Trastuzumab + response_type_qualifier: therapeutic_sensitivity + response_direction_qualifer: increased + response_target_qualifier: human patient + disease_context_qualifier: MONDO:0007254 # breast cancer + + subject: MONDO:0007254 + predicate: associated with response to + qualified_predicate: associated with + object: CHEBI:10035 # Trastuzumab + response_context_qualifier: therapeutic_sensitivity + + response associated with: is_a: associated with + inverse: associated with response to + + associated with sensitivity to: + is_a: associated with response to description: >- A relation that holds between a named thing and a chemical that specifies that the change in the named @@ -2599,7 +2650,7 @@ slots: domain: chemical entity associated with resistance to: - is_a: associated with + is_a: associated with response to description: >- A relation that holds between a named thing and a chemical that specifies that the change in the named @@ -9359,6 +9410,30 @@ classes: - owl:Axiom + disease associated with response to chemical entity association: + description: >- + A statistical association between a disease and a chemical entity where the + chemical entity has a therapeutic or adverse effect on the disease progression, symptoms or outcomes + in a patient, cell line, or any model system. + is_a: association + slots: + - response context qualifier + - response target context qualifier + defining_slots: + - subject + - predicate + - object + - response context qualifier + - response target context qualifier + slot_usage: + subject: + range: disease + object: + range: chemical entity + predicate: + subproperty_of: associated with response to + + chemical entity assesses named thing association: is_a: association slot_usage: @@ -11536,6 +11611,34 @@ classes: enums: + ResponseEnum: + description: >- + A response to a treatment or intervention + permissible_values: + therapeutic_response: + description: >- + A positive response to a treatment or intervention + negative: + description: >- + A negative response to a treatment or intervention + + ResponseTargetEnum: + description: >- + The target of a treatment or intervention + permissible_values: + cohort: + description: >- + A group of individuals that are the target of a treatment or intervention + cell line: + description: >- + A cell line that is the target of a treatment or intervention + individual: + description: >- + An individual that is the target of a treatment or intervention + sample: + description: >- + A biological materialsample that is the target of a treatment or intervention + ApprovalStatusEnum: description: >- permissible_values: diff --git a/src/biolink_model/scripts/classprefixes.py b/src/biolink_model/scripts/classprefixes.py index a7d67d198..b5cca59ba 100644 --- a/src/biolink_model/scripts/classprefixes.py +++ b/src/biolink_model/scripts/classprefixes.py @@ -1,5 +1,5 @@ # Auto generated from class_prefixes.yaml by pythongen.py version: 0.0.1 -# Generation date: 2024-09-23T16:34:04 +# Generation date: 2024-09-23T16:40:43 # Schema: BiolinkClassPrefixes # # id: biolink-model-class-prefixes